

## Traffic Impact Study

January 27, 2017 Revised January 26, 2023

Buckingham Properties
Channingville Road & Nelson Avenue
Village of Wappingers Falls, Dutchess County, New York

Prepared for:

**Buckingham Property Management Inc.**657 Main Street
Mount Kisco, NY 10549

Prepared by:

New York Professional Engineer

License No.59858

**Colliers Engineering & Design** 

400 Columbus Avenue Suite 180E Valhalla New York 10595 Main: 877 627 3772 Colliersengineering.com

Project No. 16003191A



## Table of contents

| i. Introduction                                                    |          |
|--------------------------------------------------------------------|----------|
| A. Project Description and Location                                |          |
| B. Scope of Study                                                  | 1        |
| II. Existing Roadway and Traffic Descriptions                      | 2        |
| A. Description of Existing Roadways                                |          |
| 1. Channingville Road/Nelson Avenue                                |          |
| 2. NYS Route 9D (Main Street)                                      |          |
| 3. Delavergne Avenue                                               |          |
| 4. Clinton Street                                                  |          |
| 5. Reed Avenue                                                     |          |
| B. 2023 Existing Traffic Volumes                                   |          |
| Ŭ                                                                  |          |
| III. Evaluation of Future Traffic Conditions                       |          |
|                                                                    |          |
| Site Generated Traffic Volumes      Arrival/Departure Distribution |          |
| D. 2026 Build Conditions Traffic Volumes                           |          |
| E. Description of Analysis Procedures                              |          |
| Signalized Intersection Capacity Analysis                          |          |
| 1. Signalized intersection capacity Analysis                       |          |
| 2. Unsignalized Intersection Capacity Analysis                     | 5        |
| F. Results of Analysis                                             | 5        |
| 1. Delavergne Avenue and NYS Route 9D                              |          |
| 2. Clinton Street and NYS Route 9D                                 | 6        |
| 3. Nelson Avenue and Clinton Street                                | 7        |
| 4. Channingville Road/Main Street and Reed Avenue                  |          |
| 5. Nelson Avenue and Proposed Site Access                          | 7        |
| IV. Parking Analysis                                               | 9        |
| V. Summary and Conclusion                                          | 10       |
|                                                                    |          |
| Appendices                                                         |          |
| Appendix A                                                         | Figures  |
| Appendix B                                                         | TABLES   |
| Appendix C                                                         |          |
| Appendix D                                                         |          |
| Appendix E                                                         |          |
| / \! : L:\U/\ Lassessessessessessessessessessessessesse            | ALL DATA |



#### I. Introduction

### A. Project Description and Location

(Figure No. 1)

This report has been prepared to evaluate the potential traffic impacts associated with the proposed Buckingham Property Management development ("the Project"), which is planned to be developed on the property located east of Channingville Road and Nelson Avenue approximately 1,300 feet south of Clinton Street in the Village of Wappingers Falls, Ductchess County, New York. The site is proposed to consist of 188 residential dwelling units. As shown on Figure No. 1, access to the development is proposed via a new driveway connection to Nelson Avenue approximately 1,300 south of the Clinton Street and Nelson Avenue intersection.

A Design Year of 2026 has been utilized in completing the traffic analysis in order to evaluate future traffic conditions associated with this proposed development.

### B. Scope of Study

This study has been prepared to identify current and future traffic operating conditions on the surrounding roadway network and to assess the potential traffic impacts of the Project.

All available traffic count data for the study area intersections were obtained from previous reports prepared by our office. These data were supplemented with new traffic counts collected by representatives of Colliers Engineering & Design CT, P.C. These data were also compared to count data obtained from the New York State Department of Transportation (NYSDOT). Together these data were utilized to establish the Year 2022 Existing Traffic Volumes representing existing traffic conditions in the vicinity of the site.

The Year 2023 Existing Traffic Volumes were then projected to the 2026 Design Year to take into account background traffic growth. In addition, traffic for other specific potential or approved developments in the area were estimated and then added to the Projected Traffic Volumes to obtain the Year 2026 No-Build Traffic Volumes.

Estimates were then made of the potential traffic that the proposed development would generate during each of the peak hours (see Section III-C for further discussion). The resulting site generated traffic volumes were then added to the roadway system and combined with the Year 2026 No-Build Traffic Volumes resulting in the Year 2026 Build Traffic Volumes.

The Existing, No-Build and Build Traffic Volumes were then compared to roadway capacities based on the procedures from the Highway Capacity Manual to determine existing and future Levels of Service and operating conditions. Recommendations for improvements were made where necessary to serve the existing and/or future traffic volumes.



### II. Existing Roadway and Traffic Descriptions

#### A. Description of Existing Roadways

As shown on Figure No. 1, the proposed Buckingham Properties Development will be accessed from Nelson Avenue via a new driveway connection to be located approximately 1,300 feet south of the Clinton Street and Nelson Avenue intersection. The following is a brief description of the roadways located within the study area. In addition, Section III-F provides a further description of the existing geometrics, traffic control and a summary of the existing and future Levels of Service and any recommended improvements for each of the study area intersections. Appendix "D" contains copies of the capacity analyses which indicate the existing geometrics (including lane widths) and other characteristics for each of the individual intersections studied.

#### 1. Channingville Road/Nelson Avenue

Channingville Road/Nelson Avenue is a two-lane roadway under the Village of Wappingers Falls jurisdiction to the north and under the Town of Poughkeepsie jurisdiction to the south. The roadway originates at a "T" intersection with Reed Avenue and traversing northeast, terminating at a "T" intersection with Delavergne Avenue. The roadway mainly serves residential land uses and one fire station as well as providing access to the New Hamburg Metro-North Train Station. The roadway consists of one lane in each direction and a posted speed limit of 30 mph.

#### 2. NYS Route 9D (Main Street)

NYS Route 9D is classified as a Principal Arterial Other Roadway under New York State Department of Transportation (NYSDOT) jurisdiction. The roadway generally consists of one travel lane per direction in the immediate area that traverses in a north/south direction through Putnam and Southern Dutchess County. South of the site, the roadway provides access to I-84 as well as U.S. Route 9 to the North and east. The posted speed limit is 30 mph and sidewalks are provided along both sides of the roadway. The roadway pavement is generally in good condition with the study area.

#### 3. Delavergne Avenue

Delavergne Avenue is a two-lane roadway under the Village of Wappingers Falls jurisdiction between NYS Route 9D and the Village line approximately 550 ft. west of Nelson Avenue. Beyond the Village line the roadway is under the jurisdiction of the Town of Poughkeepsie. Delavergne Avenue originates at a "T" intersection with NYS Route 9D and traversing west, terminating at a "T" intersection with Sheafe Road. The roadway mainly serves residential land uses along with some commercial land uses closer to the intersection with NYS Route 9D. The posted speed limit is 25 mph and sidewalks are provided along both sides of the roadway closer to the intersection with NYS Route 9D. The roadway pavement is generally in good condition with the study area.



#### 4. Clinton Street

Clinton Street is a two-lane roadway under the Village of Wappingers Falls jurisdiction originating at a "T" intersection with NYS Route 9D and traversing west, terminating at a "T" intersection with Nelson Avenue. The north side of the street serves mainly residential uses while the south side of the street provides access to St. Mary's Church and its school. The posted speed limit is 20 mph and sidewalks are provided along both sides of the roadway. On street parking is permitted on the north side of the roadway. It should be noted that between Saturday at 4:30 PM and Sunday at 1:30 PM, Clinton Street is one-way westbound in order to accommodate church services and parking. The roadway pavement is generally in good condition with the study area.

#### 5. Reed Avenue

Reed Avenue is a two-lane roadway under the jurisdiction of the Town of Poughkeepsie, originating at a "T" intersection with Main Street/Channingville Road and traversing west, terminating at a "T" intersection with Stone Street. The roadway mainly serves residential land uses and has approximately 10-foot travel lanes with a posted speed limit of 30 mph. The roadway pavement is generally in good condition with the study area.

### B. 2023 Existing Traffic Volumes

(Figures No. 2 and 3)

Manual traffic counts were collected by representatives of Colliers Engineering & Design CT, P.C. on January 5, 11, and 12 for the AM and PM Peak Hours to determine the existing traffic volume conditions at the study area intersections. In addition, supplemental counts were collected in January 2023 to update the data. Based on this information, the Year 2023 Existing Traffic Volumes were established for the Weekday Peak AM and Weekday Peak PM Hours at the following study area intersections.

- Delavergne Avenue and NYS Route 9D/W. Main Street
- Clinton Street and NYS Route 9D/W. Main Street
- Nelson Avenue and Clinton Street
- Channingville Road/Main Street and Reed Avenue

Based upon a review of the traffic counts, the peak hours were generally identified as follows:

Weekday Peak AM Hour
 Weekday Peak PM Hour
 7:30 AM – 8:30 AM
 4:30 PM – 5:30 PM

The resulting Year 2023 Existing Traffic Volumes are shown on Figures No. 2 and 3 for the Weekday Peak AM Hour and Weekday Peak PM Hour, respectively.



#### III. Evaluation of Future Traffic Conditions

#### A. 2026 No-Build Traffic Volumes

(Figure No. 4 through 9)

The Year 2023 Existing Traffic Volumes were increased by a growth factor of 2.0% per year to account for general background growth in the area. This growth factor is considered conservatively high based on historical data from NYSDOT, which indicates a lower historical growth level. However, this conservative growth rate was used in order to account for traffic from any other potential or approved developments in the area that could impact the traffic in the study area. The resulting Year 2026 No-Build Traffic Volumes are shown on Figures No. 4 and 5 for the Weekday Peak AM and Weekday Peak PM Hours, respectively.

#### B. Site Generated Traffic Volumes

(Table No. 1)

Estimates of the amount of traffic to be generated by the proposed residential development during each of the peak hours were developed based on information published by the Institute of Transportation Engineers (ITE) as contained in the report entitled "Trip Generation", 11th Edition, 2021, based on Land Use Category – 220 Multi-Family Housing. Table No. 1 summarizes the trip generation rates and corresponding site generated traffic volumes for the Weekday Peak AM and Weekday Peak PM Hours.

#### C. Arrival/Departure Distribution

(Figures No. 10 and 11)

It was necessary to establish arrival and departure distributions to assign the site generated traffic volumes to the surrounding roadway network. Based on a review of the Existing Traffic Volumes and the expected travel patterns on the surrounding roadway network, the distributions were identified. The anticipated arrival and departure distributions are shown on Figures No. 10 and 11, respectively.

#### D. 2026 Build Conditions Traffic Volumes

(Figures No. 12 through 15)

The site generated traffic volumes were assigned to the roadway network based on the arrival and departure distributions referenced above. The resulting site generated traffic volumes for each of the study area intersections are shown on Figures No. 12 and 13 for each of the peak hours, respectively. The site generated traffic volumes were then added to the Year 2026 No-Build Traffic Volumes to obtain the Year 2026 Build Traffic Volumes. The resulting Year 2026 Build Traffic Volumes are shown on Figures No. 14 and 15 for the Weekday Peak AM and Weekday Peak PM Hours, respectively.



#### E. Description of Analysis Procedures

It was necessary to perform capacity analyses in order to determine existing and future traffic operating conditions at the study area intersections. The following is a brief description of the analysis method utilized in this report:

#### 1. Signalized Intersection Capacity Analysis

The capacity analysis for a signalized intersection was performed in accordance with the procedures described in the Highway Capacity Manual, 6th Edition, dated 2016, published by the Transportation Research Board. The terminology used in identifying traffic flow conditions is Levels of Service. A Level of Service "A" represents the best condition and a Level of Service "F" represents the worst condition. A Level of Service "C" is generally used as a design standard while a Level of Service "D" is acceptable during peak periods. A Level of Service "E" represents an operation near capacity. In order to identify an intersection's Level of Service, the average amount of vehicle delay is computed for each approach to the intersection as well as for the overall intersection.

#### 2. Unsignalized Intersection Capacity Analysis

The unsignalized intersection capacity analysis method utilized in this report was also performed in accordance with the procedures described in the Highway Capacity Manual, 6th Edition, dated 2016. The procedure is based on total elapsed time from when a vehicle stops at the end of the queue until the vehicle departs from the stop line. The average total delay for any particular critical movement is a function of the service rate or capacity of the approach and the degree of saturation. In order to identify the Level of Service, the average amount of vehicle delay is computed for each critical movement to the intersection.

Additional information concerning signalized and unsignalized Levels of Service can be found in Appendix "C" of this report.

#### F. Results of Analysis

(Table No. 2, Table S-1, Appendix B)

Capacity analyses which take into consideration appropriate truck percentages, pedestrian activity, roadway grades and other factors were performed at the study area intersections utilizing the procedures described above to determine the Levels of Service and average vehicle delays. Summarized below are a description of the existing geometrics, traffic control and a summary of the existing and future Levels of Service as well as any recommended improvements.

Table No. 2 summarizes the results of the capacity analysis for the 2023 Existing, 2026 No-Build and 2026 Build Conditions. Appendix "D" contains copies of the capacity analysis which also indicate the existing geometrics (including lane widths) and other characteristics for each of the individual intersections studied. Table S-1 contained in Appendix "B" provides a summary of the recommended improvements for each of the study area intersections.



#### 1. Delavergne Avenue and NYS Route 9D

Delavergne Avenue intersects with NYS Route 9D at a signalized "T" shaped intersection. All approaches consist of one travel lane and each approach has sidewalks on both sides of the roadway. A crosswalk is provided in the north/south direction crossing Delavergne Avenue; however, the signalized intersection does not have a separate pedestrian phase.

Capacity analysis was conducted for this intersection utilizing the 2023 Existing Traffic Volumes. The analysis results indicate that the intersection is currently operating at an overall Level of Service "A" during the AM and PM Peak Hours.

The capacity analysis was recomputed using the 2026 No-Build and Build Traffic volumes. These results indicate that the intersection is expected to experience Levels of Service "B" or better during the AM and PM Peak Hours under future conditions. As indicated in Table S-1, no improvements are recommended at this intersection.

#### 2. Clinton Street and NYS Route 9D

Clinton Street intersects with NYS Route 9D at an unsignalized "T" shaped intersection controlled by a "Stop" sign on the Clinton Street approach. All approaches to the intersection consist of one lane and sight distances are good for all approaches. Each approach has sidewalks on both sides of the roadway and a crosswalk is provided in the north/south direction crossing Clinton Street.

Capacity analysis was conducted for this intersection utilizing the 2023 Existing Traffic Volumes. The analysis results indicate that the intersection is currently operating at an overall Level of Service "C" during the AM Peak Hour and "D" or better during the PM Peak Hour.

The capacity analysis was recomputed using the 2026 No-Build and Build Traffic volumes. Under the No-Build scenario, the results indicate that the intersection is expected to continue to operate at a Level of Service "C" or better during the AM Peak Hour while a Level of Service "E" or better will be experienced during the PM Peak Hour. Under the Build scenario, the results indicate that the intersection is expected to operate at a Level of Service "D" or better during the AM Peak Hour while a Level of Service "E" or better will be experienced during the PM Peak Hour.

It should be noted that the eastbound left turn movement is the movement that experiences the highest delay for both the No-Build and Build conditions at this location, which is not unusual during peak periods for a side road approach. It should also be noted that the presence of the traffic signal at the NYS Route 9D and Delavergne Avenue intersection provides some gaps along NYS Route 9D which should help accommodate the eastbound left turn movement for the NYS Route 9D and Clinton Street intersection. Furthermore, although this intersection will most likely not meet traffic signal warrants, a separate analysis was completed as a signalized intersection under No-Build and Build scenarios. The analysis results indicate that the intersection would operate at an overall Level of Service "A" for both the time periods during No-Build and Build scenarios if it was signalized. Under this



condition, the eastbound left turn approach would improve to a Level of Service "C" for both time periods during No-Build and Build scenarios. The intersection could be monitored in the future if necessary, to determine if signalization would be warranted. As noted in Table S-1, it is also recommended that the existing tree on the southwest corner of the intersection be pruned in order to maintain proper sight distance for vehicles exiting Clinton Street.

#### 3. Nelson Avenue and Clinton Street

Clinton Street intersects with Nelson Avenue at an unsignalized "T" shaped all-way stop intersection. All approaches to the intersection consist of one lane and sight distances are good for all approaches. There are sidewalks on both sides of Clinton Street as well as on the east side of Nelson Avenue.

Capacity analysis was conducted for this intersection utilizing the 2023 Existing Traffic Volumes. The analysis results indicate that the intersection is currently operating at an overall Level of Service "A" during the AM and PM Peak Hours.

The capacity analysis was recomputed using the 2026 No-Build and Build Traffic volumes. These results indicate that the intersection is expected to experience Levels of Service "A" during the AM and PM Peak Hours under future conditions. Regardless of the Project, it is recommended that a stop bar be striped on the Clinton Street approach at the stop location to better control traffic at the intersection.

#### 4. Channingville Road/Main Street and Reed Avenue

Reed Avenue intersects with Channingville Road/Main Street at an unsignalized "T" shaped all-way stop intersection. All approaches to the intersection consist of one lane and sight distances are good for all approaches.

Capacity analysis was conducted for this intersection utilizing the 2023 Existing Traffic Volumes. The analysis results indicate that the intersection is currently operating at an overall Level of Service "B" during the AM and PM Peak Hours.

These results indicate that the intersection is expected to experience Levels of Service "B" during the AM and PM Peak Hours under future conditions. As noted in Table S-1, although this intersection is an all-way stop intersection, it is recommended that pruning of existing vegetation be completed on the northwest and southwest corners of the Reed Avenue approach to improve sight distances and overall operation of the intersection.

#### 5. Nelson Avenue and Proposed Site Access

The northern Site Access driveway is proposed to intersect with Nelson Avenue at an unsignalized "T" shaped intersection approximately 1,300 feet south of the Clinton Street and Nelson Avenue intersection. All approaches to the intersection will consist of one lane and sight distances are good for all approaches.



The required sight distance for this site access connection is 335 feet and according to field review, the sight distance provided is approximately 420 feet in the north direction and 410 feet in the south direction. However, to achieve greater sight distances, clearing and pruning of the vegetation from both approaches is recommended.

The capacity analysis was recomputed using the 2026 No-Build and Build Traffic volumes. These results indicate that the intersection is expected to experience Levels of Service "A" during the AM and PM Peak Hours under future conditions. It is recommended that the driveway approach to the intersection be "stop" sign controlled and that "Intersection Ahead" signs be posted on the main road.



### IV. Parking Analysis

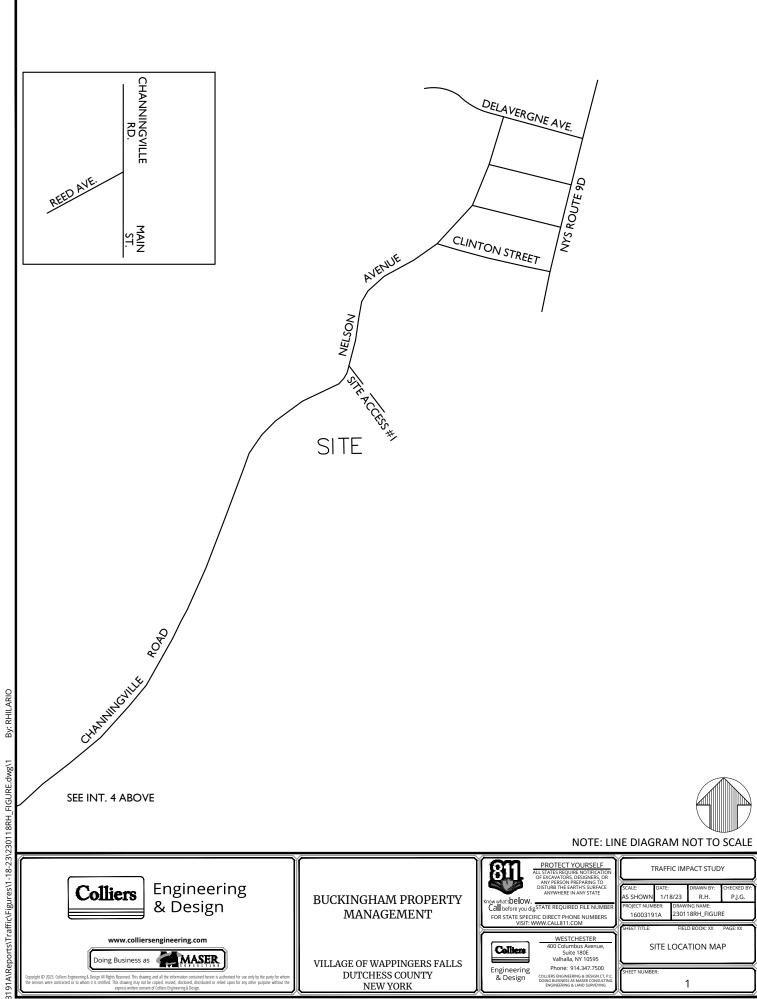
The site plan for the Project prepared by Insite Engineering indicates a total of 277 parking spaces for the proposed 188 dwelling units. This provides a parking ratio of approximately 1.44 spaces per dwelling unit. Based upon a review of the Village Code, as outlined in Section 151-24-Parking and Loading Requirements and summarized in Table 5 of that document, for a multi-family development located within the RMV Zone, one (1) space per dwelling unit is required (see Attachment P-1, contained in Appendix "E"). Thus, the provided parking satisfies the Village Code requirements.

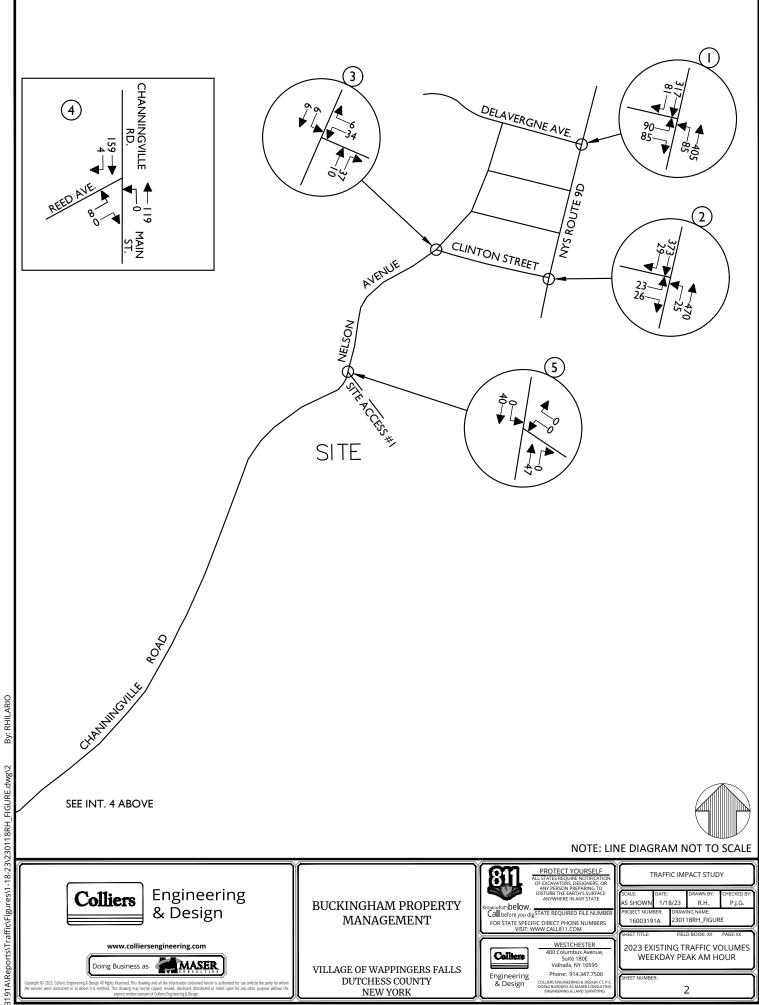
We have also reviewed the amount of parking that is proposed as compared to various other recognized publications regarding recommended parking ratio for this type and size of development, including those published by the Institute of Transportation Engineers (ITE), Parking Generation, 5th Edition, and the Urban Land Institute (ULI). ULI provides general information on suggested parking demand ratios and suggests a ratio of approximately one space per auto owned per dwelling unit.

ITE provides more specific guidance, which accounts for parking ratios per number of dwelling units and number of bedrooms. Attachment P-2 contained in Appendix "E" provides excerpts from the ITE Parking Generation, 5th Edition for multi-family developments. Utilizing this data, Table P-1 contained in Appendix "E" summarizes the computed peak parking demand for the Project for a typical Weekday and Saturday based on the proposed 188 dwelling units. This indicates a parking demand of 227 spaces on a Weekday and 246 spaces on a Saturday prior to any adjustment for mass-transit use, based on proximity to the Metro North Railroad Station. This equates to a parking demand ratio of between 1.21 to 1.31 spaces per dwelling unit. When accounting for nearby mass transit, the Weekday peak parking demand based on ITE is reduced to 201 spaces. Table P-1 also summarizes the computed peak parking demand for the Project based on the proposed 247 bedrooms, which are comprised of 6 studio units, 135 one-bedroom units, 35 two-bedroom units and 12 three-bedroom units. The table indicates a parking demand of 163 spaces on a Weekday and 205 spaces on a Saturday based on the number of bedrooms or a parking demand ratio of 0.66 to 083 spaces per bedroom.

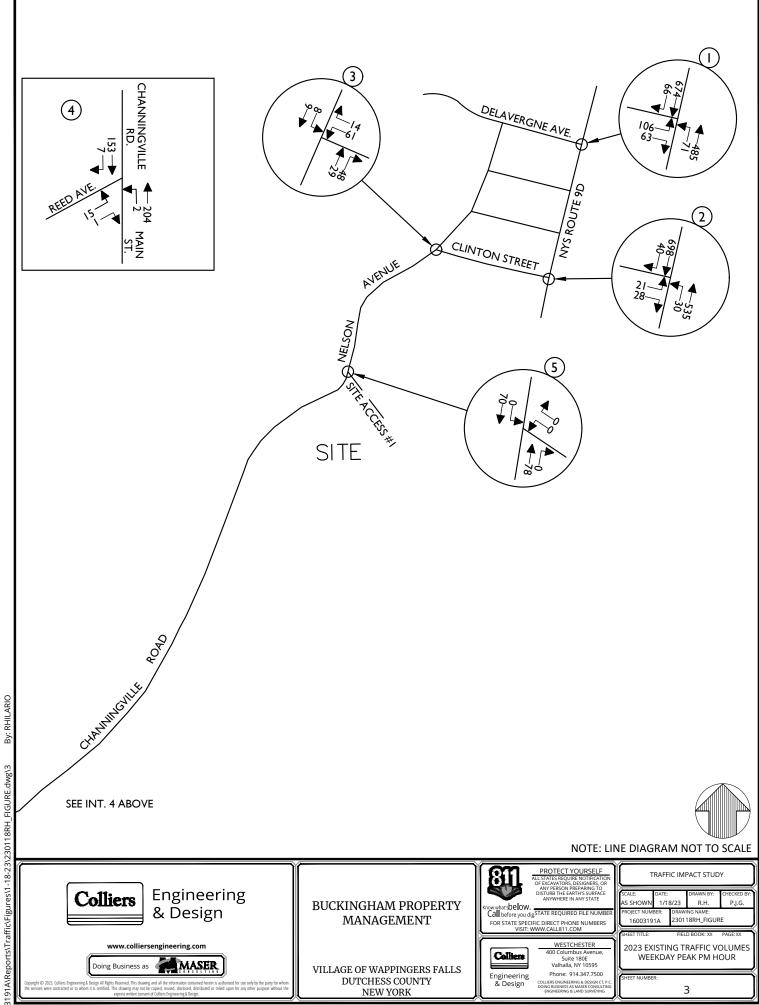
In summary, based upon a review of the various publications, the proposed 277 spaces (representing a parking ratio of approximately 1.47 spaces per dwelling unit or 1.12 spaces per bedroom) is in line with the other computed ratios and will satisfy the anticipated parking demand for the proposed Project.



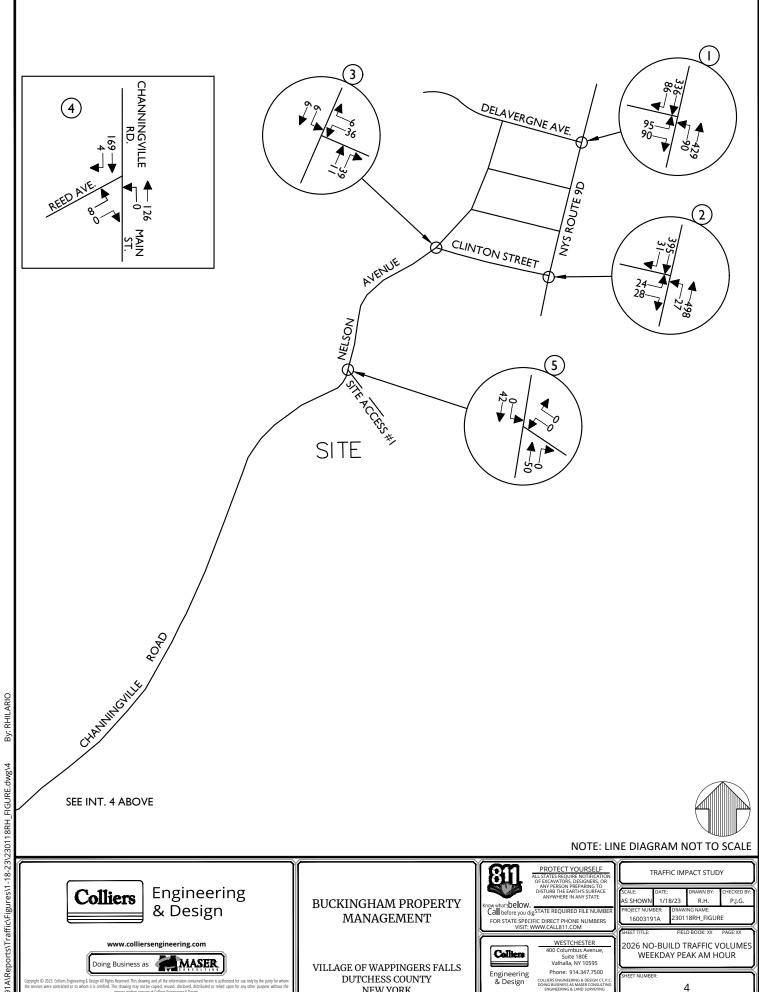

### V. Summary and Conclusion


Based on the analysis contained herein, similar Levels of Service and delays will be experienced at the area intersections under the future No-Build and Build Conditions as indicated in the above analysis. The Buckingham Properties Residential Development's traffic is not expected to result in any significant impact in traffic operating conditions on the roadways in the vicinity of the site. The site access driveway connection should be constructed to maximize sight distances entering and exiting which will likely require clearing/pruning of vegetation along the site frontage. In addition, the NYS Route 9D and Clinton Street intersection could be monitored in the future, if necessary, to determine if signalization would be warranted.

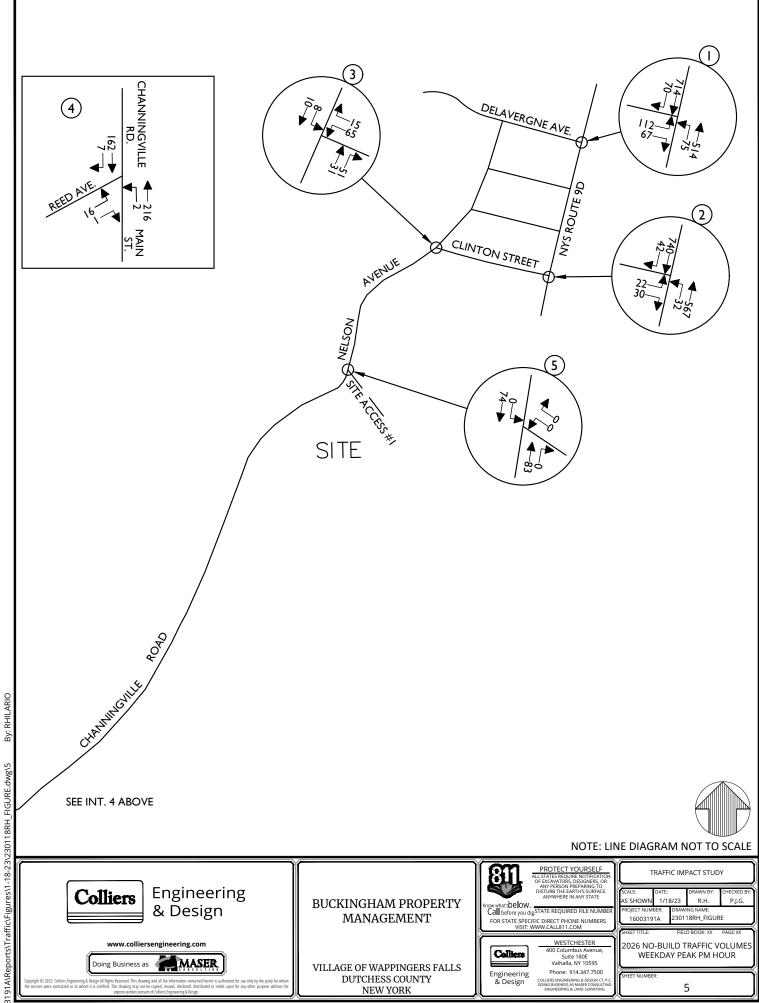
It should also be noted that the additional traffic generated by the proposed development is not expected to significantly impact roadway and pavement conditions in the vicinity of the site as the majority of the traffic volume will be passenger vehicles. However, any impacts to the area roadways as a result of construction activities related to the site should be repaired upon completion of the development.



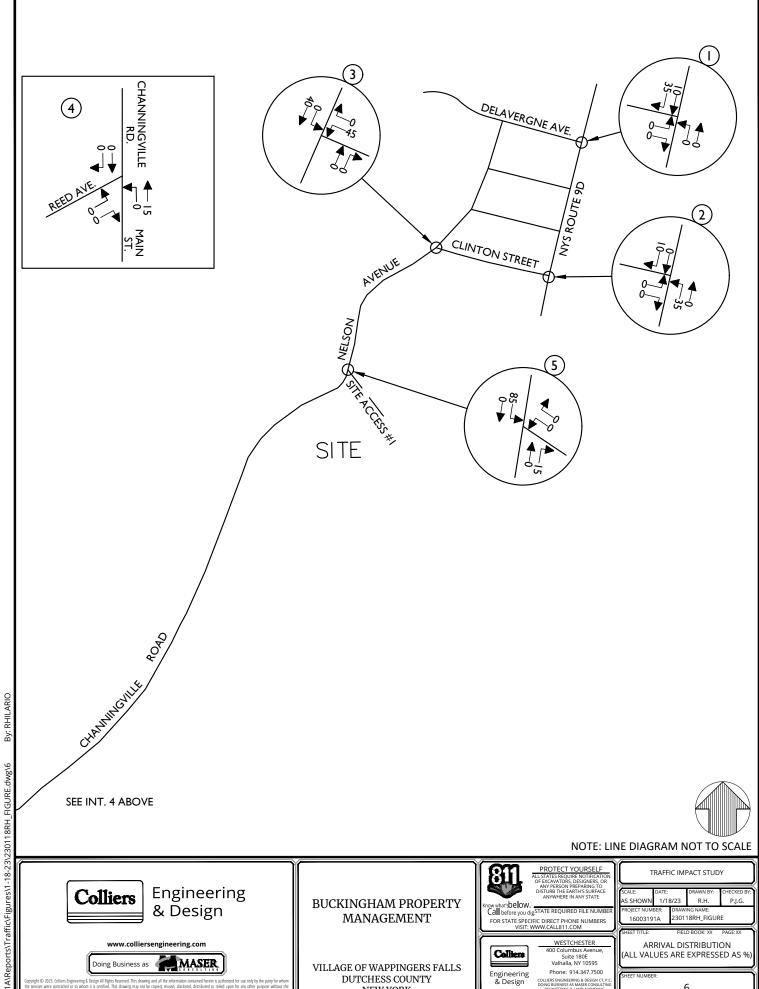

# Traffic Impact Study **Appendix A | Traffic Figures**





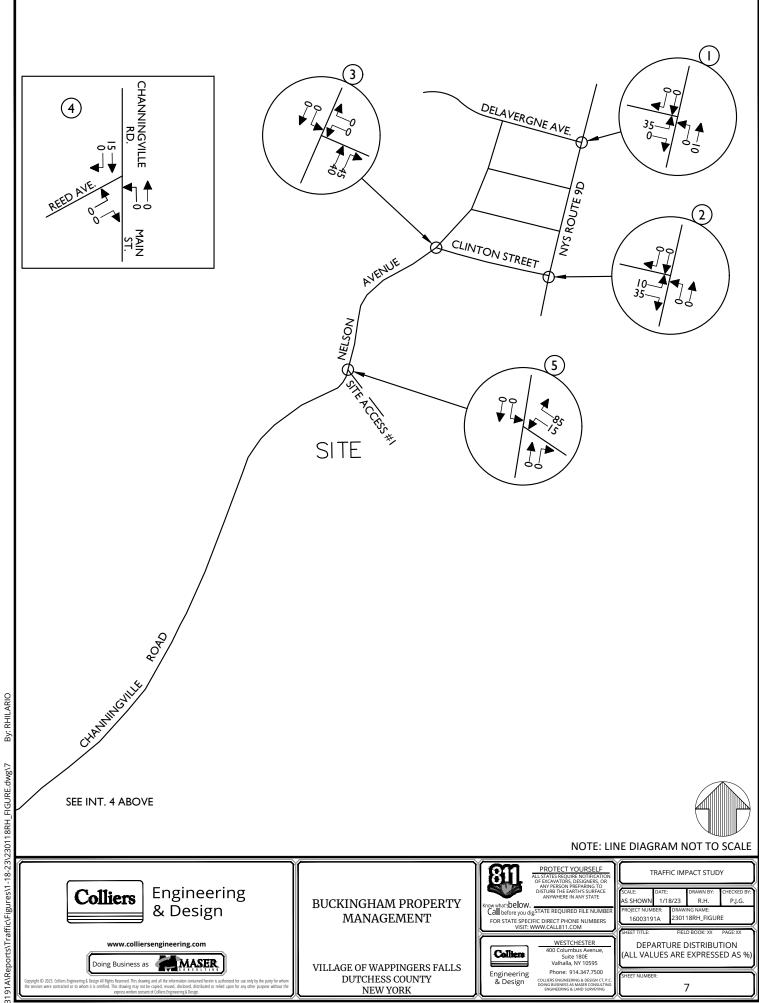


2

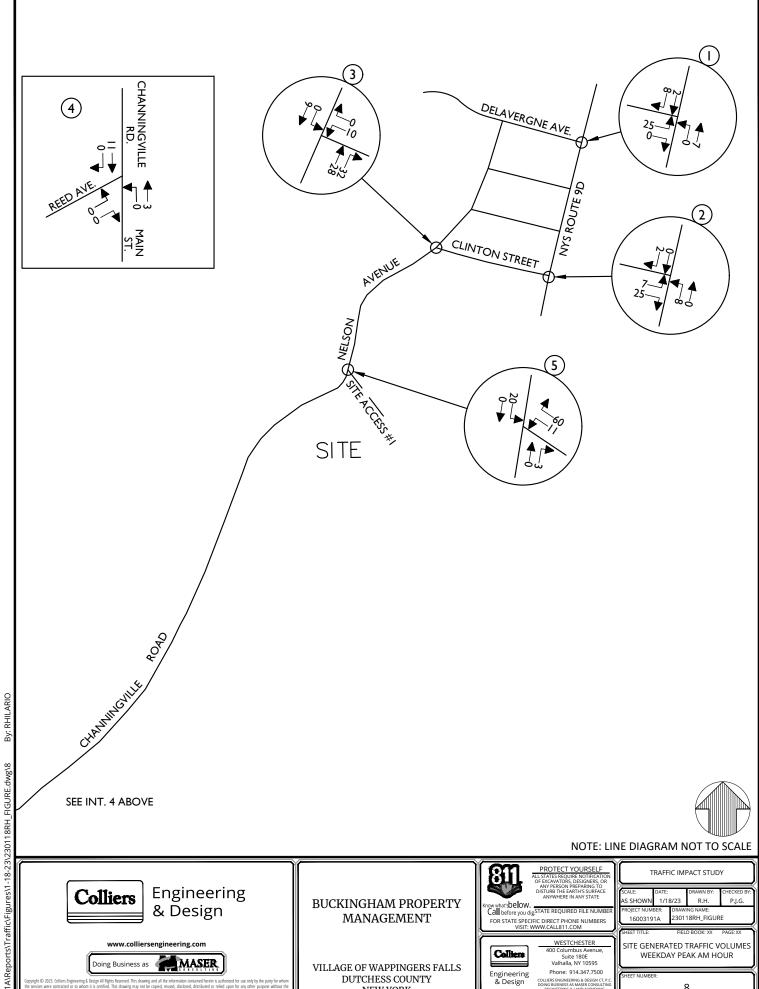



3



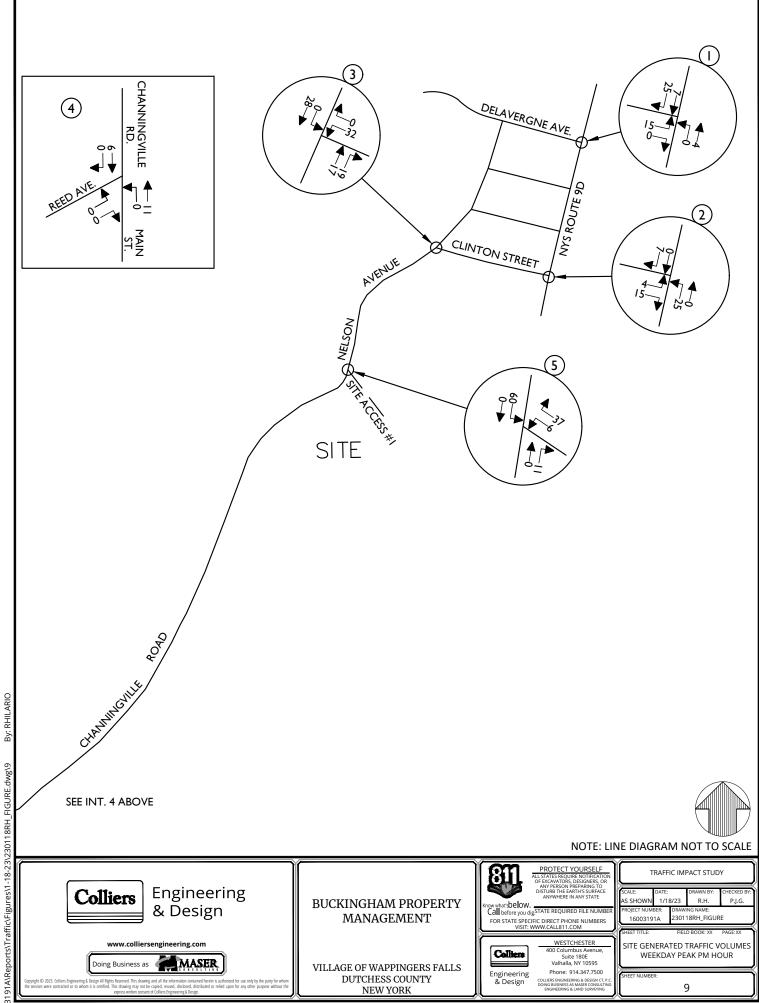
3191A\Reports\Traffic\Figures\1-18-23\230118RH\_FIGURE.dwg\4



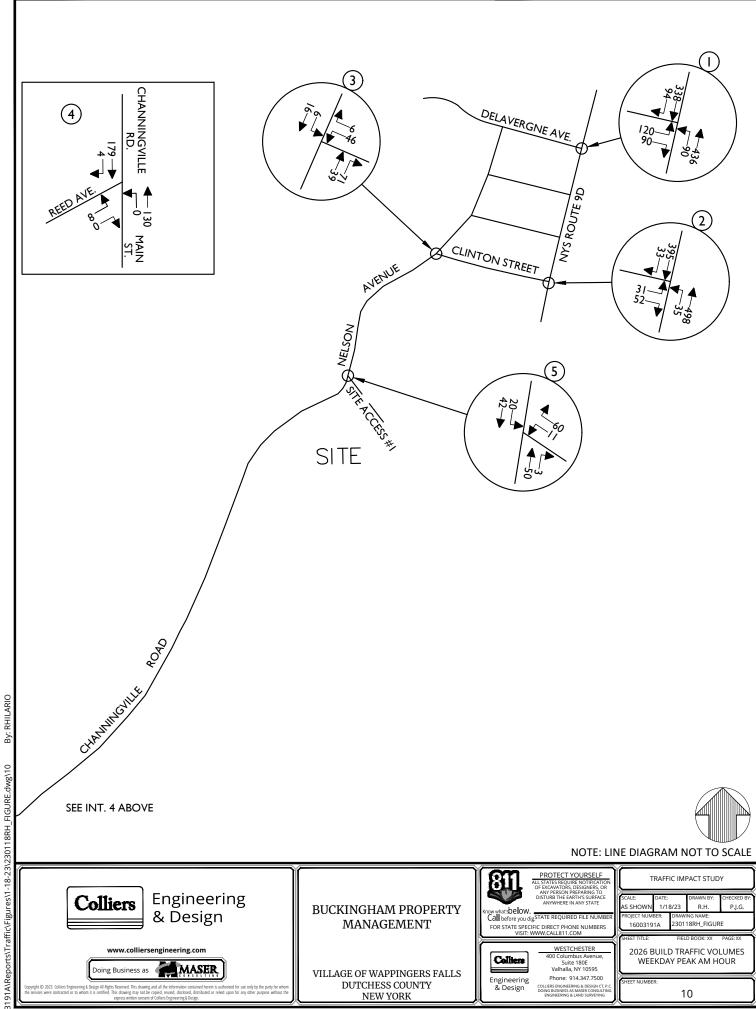


5

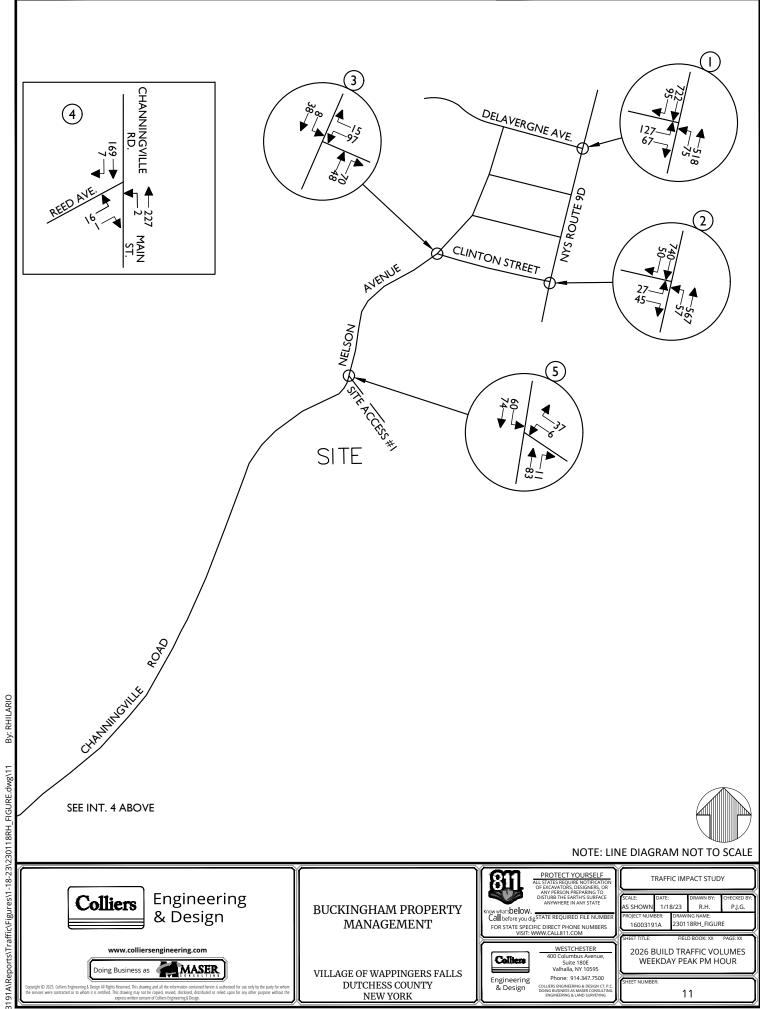


6


3191A\Reports\Traffic\Figures\1-18-23\230118RH\_FIGURE.dwg\6







8

3191A\Reports\Traffic\Figures\1-18-23\230118RH\_FIGURE.dwg\8



9







# Traffic Impact Study **Appendix B | Tables**



# Table No. 1 Hourly Trip Generation Rates (HTGR) and Anticipated Site Generated Traffic Volumes

| Buckingham Property Management      | En                | try    | Ex    | <b>cit</b>        | Total Volume |
|-------------------------------------|-------------------|--------|-------|-------------------|--------------|
| Village of Wappingers Falls, NY     | HTGR <sup>1</sup> | Volume | HTGR1 | HTGR <sup>1</sup> | Total volume |
| Residential<br>(188 dwelling units) |                   |        |       |                   |              |
| Peak AM Hour                        | 0.12              | 23     | 0.38  | 71                | 94           |
| Peak PM Hour                        | 0.38              | 71     | 0.23  | 43                | 114          |

#### **NOTES:**

1) THE HOURLY TRIP GENERATION RATES (HTGR) ARE BASED ON DATA PUBLISHED BY THE INSTITUTE OF TRANSPORTATION ENGINEERS (ITE) AS CONTAINED IN THE TRIP GENERATION HANDBOOK, 11TH EDITION, 2021. ITE LAND USE CODE - 220 MULTI-FAMILY HOUSING.



Table No. 2
Level of Service Summary Table

|   |                                  |         |          | 2023 E   | xisting    | 2026 N   | o-Build    | 2026       | Build      |
|---|----------------------------------|---------|----------|----------|------------|----------|------------|------------|------------|
|   |                                  |         |          | AM       | PM         | AM       | PM         | AM         | PM         |
| 1 | Delavergne Avenue &              | Signa   | alized   |          |            |          |            |            |            |
|   | NYS Route 9D                     |         |          |          |            |          |            |            |            |
|   | Delavergne Avenue                | EB      | LR       | C [34.5] | C [34.2]   | C [34.5] | C [34.2]   | C [34.4]   | C [34.2]   |
|   | NYS Route 9D                     | NB      | LTR      | A [4.8]  | A [5.0]    | A [5.2]  | A [5.7]    | A [5.8]    | A [6.5]    |
|   | NYS Route 9D                     | SB      | LTR      | A [4.5]  | A [6.3]    | A [4.8]  | A [7.1]    | A [5.4]    | A [8.0]    |
|   |                                  |         | erall    | A [9.6]  | A [9.0]    | A [9.9]  | A [9.7]    | B [10.8]   | B [10.7]   |
|   |                                  |         |          |          |            |          |            |            |            |
| 2 | Clinton Street &                 | Unsig   | nalized  |          |            |          |            |            |            |
|   | NYS Route 9D                     |         |          |          |            |          |            |            |            |
|   | Clinton Street                   | EB      | LR       | C [20.7] | D [30.6]   | C [22.8] | E [35.6]   | D [26.0]   | E [45.2]   |
|   | NYS Route 9D                     | NB      | LT       | A [9.3]  | A [9.8]    | A [9.4]  | B [10.0]   | A [9.5]    | B [10.2]   |
|   |                                  |         |          |          |            |          |            |            |            |
|   | With Traffic Signal              |         |          |          |            |          | a ro = 01  | a roo 43   | 6 50 6 03  |
|   | Clinton Street                   | EB      | LR       | -        | -          | C [28.3] | C [25.8]   | C [28.1]   | C [26.3]   |
|   | NYS Route 9D                     | NB      | LT       | -        | -          | A [3.7]  | A [3.7]    | A [4.7]    | A [4.3]    |
|   | NYS Route 9D                     | SB      | TR       | -        | -          | A [3.5]  | A [5.3]    | A [4.4]    | A [5.9]    |
|   |                                  | OVE     | erall    | -        | -          | A [5.4]  | A [5.5]    | A [7.2]    | A [6.3]    |
| 3 | Nelson Avenue &                  | Unsig   | nalized  |          |            |          |            |            |            |
|   | Clinton Street                   |         |          |          |            |          |            |            |            |
|   | Clinton Street                   | WB      | LR       | A [8.4]  | A [8.2]    | A [8.1]  | A [8.2]    | A [8.1]    | A [8.3]    |
|   | Nelson Avenue                    | NEB     | TR       | A [7.0]  | A [8.7]    | A [8.4]  | A [8.9]    | A [8.5]    | A [9.0]    |
|   | Nelson Avenue                    | SWB     | LT       | A [7.3]  | A [8.5]    | A [8.6]  | A [8.6]    | A [8.7]    | A [8.7]    |
|   |                                  |         | RALL     | A [7.7]  | A [8.6]    | A [8.5]  | A [8.7]    | A [8.6]    | A [8.8]    |
|   |                                  |         |          |          | - <b>-</b> |          | - <b>-</b> | - <b>-</b> | - <b>-</b> |
| 4 | Channingville Road/Main Street & | Unsig   | nalized  |          |            |          |            |            |            |
|   | Reed Avenue                      |         |          |          |            |          |            |            |            |
|   | Reed Avenue                      | EB      | LR       | A [8.0]  | B [12.9]   | B [12.5] | B [13.4]   | B [12.8]   | B [13.7]   |
|   | Main Street                      | NB      | LT       | A [8.3]  | A [7.6]    | A [0.0]  | A [7.6]    | A [0.0]    | A [7.7]    |
|   | Channingville Road               | SB      | LT       | A [8.4]  | A [7.6]    | A [0.0]  | A [7.6]    | A [0.0]    | A [7.7]    |
|   | _                                | OVE     | RALL     | A [8.3]  | A [7.5]    | A [7.8]  | A [7.6]    | A [8.0]    | A [8.2]    |
| 5 | Nelson Avenue &                  | Uncia   | nalized  |          |            |          |            |            |            |
|   | Site Access                      | Ulisigi | iidiizeu |          |            |          |            |            |            |
|   | Site Access                      |         |          |          |            |          |            |            |            |
|   | Site Access                      | NW      | LR       | -        | -          | -        | -          | A [9.0]    | A [9.2]    |
|   | Nelson Avenue                    | SB      | LT       | -        | -          | -        | -          | A [7.4]    | A [7.5]    |
|   |                                  |         |          |          |            |          |            |            |            |

#### **NOTES:**

<sup>1)</sup> THE ABOVE REPRESENTS THE LEVEL OF SERVICE AND VEHICLE DELAY IN SECONDS, C [16.2], FOR EACH KEY APPROACH OF THE UNSIGNALIZED INTERSECTIONS AS WELL AS FOR EACH APPROACH AND THE OVERALL INTERSECTION FOR THE SIGNALIZED INTERSECTIONS. SEE APPENDIX "C" FOR A DESCRIPTION OF THE LEVELS OF SERVICE.



## TABLE S-1 SUMMARY OF RECOMMENDED IMPROVEMENTS

| Inte | rsection                         | Traffic Control | Recommened Improvements                                            |
|------|----------------------------------|-----------------|--------------------------------------------------------------------|
| 1    | Delavergne Avenue &              | Signalized      | No improvements recommended at this location                       |
|      | NYS Route 9D                     |                 |                                                                    |
| 2    | Clinton Street &                 | Unsignalized    | Prune existing tree on the southwest corner of the intersection    |
|      | NYS Route 9D                     |                 |                                                                    |
| 3    | Nelson Avenue &                  | Unsignalized    | Provide striping for a Stop Bar                                    |
|      | Clinton Street                   |                 |                                                                    |
| 4    | Channingville Road/Main Street & | Unsignalized    | Prune existing vegetation on northwest and southwest corners of    |
|      | Reed Avenue                      |                 | the Reed Avenue approach to the intersection                       |
| 5    | Nelson Avenue &                  | Unsignalized    | Construct driveway connection to maximize sight distances entering |
|      | Site Access                      |                 | and exiting driveway. This may require clearing/pruning of         |
|      |                                  |                 | vegetation along Site frontage.                                    |



# Traffic Impact Study **Appendix C | Level of Service Standards**



## Level of Service Standards

## Level of Service for Signalized Intersections

Level of Service (LOS) can be characterized for the entire intersection, each intersection approach, and each lane group. Control delay alone is used to characterize LOS for the entire intersection or an approach. Control delay and volume-to-capacity (v/c) ratio are used to characterize LOS for a lane group. Delay quantifies the increase in travel time due to traffic signal control. It is also a measure of driver discomfort and fuel consumption. The volume-to-capacity ratio quantifies the degree to which a phase's capacity is utilized by a lane group.

- **LOS A** describes operations with a control delay of 10 s/veh or less and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is exceptionally favorable or the cycle length is very short. If it is due to favorable progression, most vehicles arrive during the green indication and travel through the intersection without stopping.
- **LOS B** describes operations with control delay between 10 and 20 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is highly favorable or the cycle length is short. More vehicles stop than with LOS A.
- **LOS C** describes operations with control delay between 20 and 35 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when progression is favorable or the cycle length is moderate.
- **LOS D** describes operations with control delay between 35 and 55 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high and either progression is ineffective or the cycle length is long.
- **LOS E** describes operations with control delay between 55 and 80 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high, progression is unfavorable, and the cycle length is long.
- **LOS F** describes operations with control delay exceeding 80 s/veh or a volume-to-capacity ratio greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is very high, progression is very poor, and the cycle length is long.

A lane group can incur a delay less than 80 s/veh when the volume-to-capacity ratio exceeds 1.0. This condition typically occurs when the cycle length is short, the signal progression is favorable, or both. As a result, both the delay and volume-to-capacity ratio are considered when lane group LOS is established. A ratio of 1.0 or more indicates that cycle capacity is fully utilized and represents failure from a capacity perspective (just as delay in excess of 80 s/veh represents failure from a delay perspective).



The Level of Service Criteria for signalized intersections are given in Exhibit 19-8 from the *Highway Capacity Manual, 6^{th} Edition* published by the Transportation Research Board.

Exhibit 19-8 LOS by Volume-to-Capacity Ratio

| Control Delay (s/veh) | v/c ≤ 1.0 | v/c ≥ 1.0 |
|-----------------------|-----------|-----------|
| ≤10                   | А         | F         |
| >10-20                | В         | F         |
| >20-35                | С         | F         |
| >35-55                | D         | F         |
| >55-80                | Е         | F         |
| >80                   | F         | F         |

For approach-based and intersection wide assessments, LOS is defined solely by control delay.



# Level of Service Criteria For Two-Way Stop-Controlled (TWSC) Unsignalized Intersections

Level of Service (LOS) for a two-way stop-controlled (TWSC) intersection is determined by the computed or measured control delay. For motor vehicles, LOS is determined for each minor-street movement (or shared movement) as well as major-street left turns. LOS is not defined for the intersection as a whole or for major-street approaches.

The Level of Service Criteria for TWSC unsignalized intersections are given in Exhibit 20-2 from the Highway Capacity Manual, 6th Edition published by the Transportation Research Board.

Exhibit 20-2 LOS by Volume-to-Capacity Ratio

| Control Delay (s/veh) | v/c ≤ 1.0 | v/c ≥ 1.0 |
|-----------------------|-----------|-----------|
| 0-10                  | А         | F         |
| >10-15                | В         | F         |
| >15-25                | С         | F         |
| >25-35                | D         | F         |
| >35-50                | Е         | F         |
| >50                   | F         | F         |

The LOS criteria apply to each lane on a given approach and to each approach on the minor street. LOS is not calculated for major-street approaches or for the intersection as a whole.

As Exhibit 20-2 notes, LOS F is assigned to the movement if the volume-to-capacity ratio for the movement exceeds 1.0, regardless of the control delay.

The Level of Service Criteria for unsignalized intersections are somewhat different from the criteria for signalized intersections.



## Level of Service Criteria For All-Way Stop-Controlled (AWSC) Unsignalized Intersections

The Levels of Service (LOS) for all-way stop-controlled (AWSC) intersections are given in Exhibit 21-8. As the exhibit notes, LOS F is assigned if the volume-to-capacity (v/c) ratio of a lane exceeds 1.0, regardless of the control delay. For assessment of LOS at the approach and intersection levels, LOS is based solely on control delay.

The Level of Service Criteria for AWSC unsignalized intersections are given in Exhibit 21-8 from the *Highway* Capacity *Manual*, 6<sup>th</sup> *Edition* published by the Transportation Research Board.

Exhibit 21-8 LOS by Volume-to-Capacity Ratio

| Control Delay (s/veh) | v/c ≤ 1.0 | v/c ≥ 1.0 |
|-----------------------|-----------|-----------|
| 0-10                  | А         | F         |
| >10-15                | В         | F         |
| >15-25                | С         | F         |
| >25-35                | D         | F         |
| >35-50                | Е         | F         |
| >50                   | F         | F         |

For approaches and intersection wide assessment, LOS is defined solely by control delay.



# Traffic Impact Study **Appendix D | Capacity Analysis**

|                            | ۶          | •     | 1       | 1          | Ţ          | 1                       |
|----------------------------|------------|-------|---------|------------|------------|-------------------------|
| Lane Group                 | EBL        | EBR   | NBL     | NBT        | SBT        | SBR                     |
| Lane Configurations        | **         |       |         | 4          | <b>\$</b>  |                         |
| Traffic Volume (vph)       | 90         | 85    | 85      | 405        | 317        | 81                      |
| Future Volume (vph)        | 90         | 85    | 85      | 405        | 317        | 81                      |
| Ideal Flow (vphpl)         | 1900       | 1900  | 1900    | 1900       | 1900       | 1900                    |
| Lane Width (ft)            | 13         | 12    | 12      | 16         | 12         | 12                      |
| Grade (%)                  | 2%         |       |         | 1%         | 1%         |                         |
| Lane Util. Factor          | 1.00       | 1.00  | 1.00    | 1.00       | 1.00       | 1.00                    |
| Frt                        | 0.935      |       | 1100    |            | 0.973      |                         |
| Flt Protected              | 0.975      |       |         | 0.991      | 0.770      |                         |
| Satd. Flow (prot)          | 1590       | 0     | 0       | 1977       | 1666       | 0                       |
| Flt Permitted              | 0.975      |       |         | 0.868      |            |                         |
| Satd. Flow (perm)          | 1590       | 0     | 0       | 1732       | 1666       | 0                       |
| Right Turn on Red          | .070       | Yes   |         | 1102       | .000       | Yes                     |
| Satd. Flow (RTOR)          | 52         | .03   |         |            | 26         | .03                     |
| Link Speed (mph)           | 30         |       |         | 40         | 40         |                         |
| Link Distance (ft)         | 318        |       |         | 1043       | 324        |                         |
| Travel Time (s)            | 7.2        |       |         | 17.8       | 5.5        |                         |
| Peak Hour Factor           | 0.95       | 0.95  | 0.95    | 0.95       | 0.95       | 0.95                    |
| Heavy Vehicles (%)         | 9%         | 14%   | 14%     | 6%         | 11%        | 0. <del>9</del> 5<br>8% |
|                            | 9%<br>95   | 14%   | 89      | 426        | 334        | 85                      |
| Adj. Flow (vph)            | 90         | 89    | 89      | 420        | 334        | <b>Ø</b> 3              |
| Shared Lane Traffic (%)    | 104        | 0     | 0       | E1F        | 410        | 0                       |
| Lane Group Flow (vph)      | 184        | 0     | 0       | 515<br>No. | 419        | 0                       |
| Enter Blocked Intersection | No<br>Loft | No    | No      | No         | No<br>Loft | No<br>Diabt             |
| Lane Alignment             | Left       | Right | Left    | Left       | Left       | Right                   |
| Median Width(ft)           | 13         |       |         | 0          | 0          |                         |
| Link Offset(ft)            | 0          |       |         | 0          | 0          |                         |
| Crosswalk Width(ft)        | 16         |       |         | 16         | 16         |                         |
| Two way Left Turn Lane     |            |       | 4 5 1   | 0.05       | 4 4 4      |                         |
| Headway Factor             | 0.97       | 1.01  | 1.01    | 0.85       | 1.01       | 1.01                    |
| Turning Speed (mph)        | 15         | 9     | 15      |            |            | 9                       |
| Number of Detectors        | 1          |       | 1       | 1          | 1          |                         |
| Detector Template          |            |       | Left    |            |            |                         |
| Leading Detector (ft)      | 35         |       | 20      | 6          | 6          |                         |
| Trailing Detector (ft)     | -5         |       | 0       | 0          | 0          |                         |
| Detector 1 Position(ft)    | -5         |       | 0       | 0          | 0          |                         |
| Detector 1 Size(ft)        | 40         |       | 20      | 6          | 6          |                         |
| Detector 1 Type            | CI+Ex      |       | CI+Ex   | CI+Ex      | CI+Ex      |                         |
| Detector 1 Channel         |            |       |         |            |            |                         |
| Detector 1 Extend (s)      | 0.0        |       | 0.0     | 0.0        | 0.0        |                         |
| Detector 1 Queue (s)       | 0.0        |       | 0.0     | 0.0        | 0.0        |                         |
| Detector 1 Delay (s)       | 0.0        |       | 0.0     | 0.0        | 0.0        |                         |
| Turn Type                  | Prot       |       | Perm    | NA         | NA         |                         |
| Protected Phases           | 4          |       | . 51111 | 2          | 6          |                         |
| Permitted Phases           | 7          |       | 2       |            | U          |                         |
| Detector Phase             | 4          |       | 2       | 2          | 6          |                         |
| Switch Phase               | 4          |       | ۷       |            | U          |                         |
| Minimum Initial (s)        | 5.0        |       | 5.0     | 5.0        | 5.0        |                         |
| . ,                        |            |       |         |            |            |                         |
| Minimum Split (s)          | 23.0       |       | 23.0    | 23.0       | 23.0       |                         |
| Total Split (s)            | 30.0       |       | 60.0    | 60.0       | 60.0       |                         |
| Total Split (%)            | 33.3%      |       | 66.7%   | 66.7%      | 66.7%      |                         |
| Maximum Green (s)          | 25.0       |       | 55.0    | 55.0       | 55.0       |                         |
| Yellow Time (s)            | 4.0        |       | 4.0     | 4.0        | 4.0        |                         |
| All-Red Time (s)           | 1.0        |       | 1.0     | 1.0        | 1.0        |                         |

Synchro 11 Report Page 1

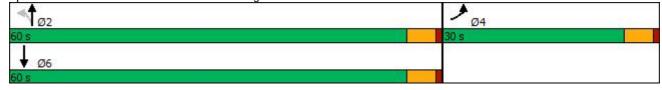
Job# 16003191A - R.H.

| I. IN I S Route 3D | & Delay | reigne | AVEII        | ue |     |  |
|--------------------|---------|--------|--------------|----|-----|--|
|                    |         | 84     | 1 <u>2</u> 8 | •  | 818 |  |

|                         |      |     | 4000 | 6386 | 50000 |     |  |
|-------------------------|------|-----|------|------|-------|-----|--|
| Lane Group              | EBL  | EBR | NBL  | NBT  | SBT   | SBR |  |
| Lost Time Adjust (s)    | 0.0  |     |      | 0.0  | 0.0   |     |  |
| Total Lost Time (s)     | 5.0  |     |      | 5.0  | 5.0   |     |  |
| Lead/Lag                |      |     |      |      |       |     |  |
| Lead-Lag Optimize?      |      |     |      |      |       |     |  |
| Vehicle Extension (s)   | 2.0  |     | 2.0  | 2.0  | 2.0   |     |  |
| Recall Mode             | None |     | Max  | Max  | Max   |     |  |
| Walk Time (s)           |      |     |      |      | 7.0   |     |  |
| Flash Dont Walk (s)     |      |     |      |      | 11.0  |     |  |
| Pedestrian Calls (#/hr) |      |     |      |      | 0     |     |  |
| v/c Ratio               | 0.68 |     |      | 0.41 | 0.35  |     |  |
| Control Delay           | 34.5 |     |      | 5.9  | 5.1   |     |  |
| Queue Delay             | 0.0  |     |      | 0.0  | 0.0   |     |  |
| Total Delay             | 34.5 |     |      | 5.9  | 5.1   |     |  |
| Queue Length 50th (ft)  | 59   |     |      | 76   | 53    |     |  |
| Queue Length 95th (ft)  | 122  |     |      | 167  | 123   |     |  |
| Internal Link Dist (ft) | 238  |     |      | 963  | 244   |     |  |
| Turn Bay Length (ft)    |      |     |      |      |       |     |  |
| Base Capacity (vph)     | 558  |     |      | 1255 | 1214  |     |  |
| Starvation Cap Reductn  | 0    |     |      | 0    | 0     |     |  |
| Spillback Cap Reductn   | 0    |     |      | 0    | 0     |     |  |
| Storage Cap Reductn     | 0    |     |      | 0    | 0     |     |  |
| Reduced v/c Ratio       | 0.33 |     |      | 0.41 | 0.35  |     |  |

#### **Intersection Summary**

Area Type: Other


Cycle Length: 90

Actuated Cycle Length: 76.1

Natural Cycle: 50

Control Type: Semi Act-Uncoord

Splits and Phases: 1: NYS Route 9D & Delavergne Avenue



|                             | ٠    | •    | 1    | <b>†</b> | ļ        | 1    |
|-----------------------------|------|------|------|----------|----------|------|
| Movement                    | EBL  | EBR  | NBL  | NBT      | SBT      | SBR  |
| Lane Configurations         | N/   |      |      | र्स      | ĵ.       |      |
| Traffic Volume (veh/h)      | 90   | 85   | 85   | 405      | 317      | 81   |
| Future Volume (veh/h)       | 90   | 85   | 85   | 405      | 317      | 81   |
| Initial Q (Qb), veh         | 0    | 0    | 0    | 0        | 0        | 0    |
| Ped-Bike Adj(A_pbT)         | 1.00 | 1.00 | 1.00 |          |          | 1.00 |
| Parking Bus, Adj            | 1.00 | 1.00 | 1.00 | 1.00     | 1.00     | 1.00 |
| Work Zone On Approach       | No   | 1.00 | 1.00 | No       | No       | 1.00 |
| Adj Sat Flow, veh/h/ln      | 1813 | 1669 | 1687 | 1877     | 1731     | 1776 |
| Adj Flow Rate, veh/h        | 95   | 89   | 89   | 426      | 334      | 85   |
| Peak Hour Factor            | 0.95 | 0.95 | 0.95 | 0.95     | 0.95     | 0.95 |
| Percent Heavy Veh, %        | 9    | 14   | 14   | 0.93     | 11       | 0.93 |
| Cap, veh/h                  | 115  | 108  | 225  | 1044     | 971      | 247  |
| Arrive On Green             | 0.14 | 0.14 | 0.73 | 0.73     | 0.73     | 0.73 |
|                             | 837  |      | 231  | 1431     |          |      |
| Sat Flow, veh/h             |      | 784  |      |          | 1331     | 339  |
| Grp Volume(v), veh/h        | 185  | 0    | 515  | 0        | 0        | 419  |
| Grp Sat Flow(s), veh/h/ln   | 1630 | 0    | 1662 | 0        | 0        | 1670 |
| Q Serve(g_s), s             | 8.3  | 0.0  | 0.0  | 0.0      | 0.0      | 6.8  |
| Cycle Q Clear(g_c), s       | 8.3  | 0.0  | 7.7  | 0.0      | 0.0      | 6.8  |
| Prop In Lane                | 0.51 | 0.48 | 0.17 |          |          | 0.20 |
| Lane Grp Cap(c), veh/h      | 225  | 0    | 1268 | 0        | 0        | 1218 |
| V/C Ratio(X)                | 0.82 | 0.00 | 0.41 | 0.00     | 0.00     | 0.34 |
| Avail Cap(c_a), veh/h       | 540  | 0    | 1268 | 0        | 0        | 1218 |
| HCM Platoon Ratio           | 1.00 | 1.00 | 1.00 | 1.00     | 1.00     | 1.00 |
| Upstream Filter(I)          | 1.00 | 0.00 | 1.00 | 0.00     | 0.00     | 1.00 |
| Uniform Delay (d), s/veh    | 31.6 | 0.0  | 3.8  | 0.0      | 0.0      | 3.7  |
| Incr Delay (d2), s/veh      | 2.9  | 0.0  | 1.0  | 0.0      | 0.0      | 0.8  |
| Initial Q Delay(d3),s/veh   | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln    | 3.3  | 0.0  | 2.0  | 0.0      | 0.0      | 1.6  |
| Unsig. Movement Delay, s/ve |      |      |      |          |          |      |
| LnGrp Delay(d),s/veh        | 34.5 | 0.0  | 4.8  | 0.0      | 0.0      | 4.5  |
| LnGrp LOS                   | С    | A    | A    | A        | A        | A    |
| Approach Vol, veh/h         | 185  |      |      | 515      | 419      |      |
| Approach Delay, s/veh       | 34.5 |      |      | 4.8      | 4.5      |      |
| Approach LOS                | C    |      |      | Α.       | 4.5<br>A |      |
|                             | C    |      |      |          | Л        |      |
| Timer - Assigned Phs        |      | 2    |      | 4        |          | 6    |
| Phs Duration (G+Y+Rc), s    |      | 60.0 |      | 15.4     |          | 60.0 |
| Change Period (Y+Rc), s     |      | 5.0  |      | 5.0      |          | 5.0  |
| Max Green Setting (Gmax), s | 6    | 55.0 |      | 25.0     |          | 55.0 |
| Max Q Clear Time (g_c+l1),  |      | 9.7  |      | 10.3     |          | 8.8  |
| Green Ext Time (p_c), s     |      | 0.7  |      | 0.3      |          | 0.5  |
| Intersection Summary        |      |      |      |          |          |      |
|                             |      |      | 9.6  |          |          |      |
| HCM 6th Ctrl Delay          |      |      |      |          |          |      |
| HCM 6th LOS                 |      |      | A    |          |          |      |
| Notes                       |      |      |      |          |          |      |

User approved volume balancing among the lanes for turning movement.

|                            | ۶     | •     | 1    | 1     | ļ     | 1     |
|----------------------------|-------|-------|------|-------|-------|-------|
| Lane Group                 | EBL   | EBR   | NBL  | NBT   | SBT   | SBR   |
| Lane Configurations        | M     |       |      | र्स   | ĵ.    |       |
| Traffic Volume (vph)       | 23    | 26    | 25   | 470   | 373   | 29    |
| Future Volume (vph)        | 23    | 26    | 25   | 470   | 373   | 29    |
| Ideal Flow (vphpl)         | 1900  | 1900  | 1900 | 1900  | 1900  | 1900  |
| Grade (%)                  | 2%    |       |      | 3%    | -1%   |       |
| Lane Util. Factor          | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00  |
| Frt                        | 0.928 |       |      |       | 0.990 |       |
| Flt Protected              | 0.977 |       |      | 0.998 |       |       |
| Satd. Flow (prot)          | 1338  | 0     | 0    | 1726  | 1783  | 0     |
| Flt Permitted              | 0.977 |       |      | 0.998 |       |       |
| Satd. Flow (perm)          | 1338  | 0     | 0    | 1726  | 1783  | 0     |
| Link Speed (mph)           | 30    |       |      | 30    | 30    |       |
| Link Distance (ft)         | 904   |       |      | 139   | 1043  |       |
| Travel Time (s)            | 20.5  |       |      | 3.2   | 23.7  |       |
| Peak Hour Factor           | 0.62  | 0.62  | 0.95 | 0.95  | 0.83  | 0.83  |
| Heavy Vehicles (%)         | 20%   | 34%   | 50%  | 6%    | 6%    | 6%    |
| Adj. Flow (vph)            | 37    | 42    | 26   | 495   | 449   | 35    |
| Shared Lane Traffic (%)    |       |       |      |       |       |       |
| Lane Group Flow (vph)      | 79    | 0     | 0    | 521   | 484   | 0     |
| Enter Blocked Intersection | No    | No    | No   | No    | No    | No    |
| Lane Alignment             | Left  | Right | Left | Left  | Left  | Right |
| Median Width(ft)           | 12    |       |      | 0     | 0     |       |
| Link Offset(ft)            | 0     |       |      | 0     | 0     |       |
| Crosswalk Width(ft)        | 16    |       |      | 16    | 16    |       |
| Two way Left Turn Lane     |       |       |      |       |       |       |
| Headway Factor             | 1.01  | 1.01  | 1.02 | 1.02  | 0.99  | 0.99  |
| Turning Speed (mph)        | 15    | 9     | 15   |       |       | 9     |
| Sign Control               | Stop  |       |      | Free  | Free  |       |
| Intersection Summary       |       |       |      |       |       |       |
| Area Type:                 | Other |       |      |       |       |       |

| Intersection           |           |           |         |       |          |      |
|------------------------|-----------|-----------|---------|-------|----------|------|
| Int Delay, s/veh       | 1.7       |           |         |       |          |      |
| Movement               | EBL       | EBR       | NBL     | NBT   | SBT      | SBR  |
| Lane Configurations    | W         |           |         | 4     | <b>1</b> |      |
| Traffic Vol, veh/h     | 23        | 26        | 25      | 470   | 373      | 29   |
| Future Vol, veh/h      | 23        | 26        | 25      | 470   | 373      | 29   |
| Conflicting Peds, #/hr | 0         | 0         | 0       | 0     | 0        | 0    |
| Sign Control           | Stop      | Stop      | Free    | Free  | Free     | Free |
| RT Channelized         | -         | None      |         |       | -        |      |
| Storage Length         | 0         | -         | -       | -     | -        | -    |
| Veh in Median Storage  |           | -         | -       | 0     | 0        | _    |
| Grade, %               | 2         | _         | _       | 3     | -1       | -    |
| Peak Hour Factor       | 62        | 62        | 95      | 95    | 83       | 83   |
| Heavy Vehicles, %      | 20        | 34        | 50      | 6     | 6        | 6    |
| Mymt Flow              | 37        | 42        | 26      | 495   | 449      | 35   |
| IVIVIIIL I IOVV        | 31        | 42        | 20      | 473   | 447      | 33   |
|                        |           |           |         |       |          |      |
| Major/Minor N          | 1inor2    | Λ         | /lajor1 | N     | /lajor2  |      |
| Conflicting Flow All   | 1014      | 467       | 484     | 0     | -        | 0    |
| Stage 1                | 467       | -         | -       | -     | -        | -    |
| Stage 2                | 547       | -         | -       | -     | -        | -    |
| Critical Hdwy          | 7         | 6.74      | 4.6     | -     | -        | -    |
| Critical Hdwy Stg 1    | 6         | -         | -       | -     | -        | -    |
| Critical Hdwy Stg 2    | 6         | _         | -       | _     | _        | _    |
| Follow-up Hdwy         |           | 3.606     | 2.65    | _     | _        | _    |
| Pot Cap-1 Maneuver     | 219       | 521       | 870     | _     | _        | _    |
| Stage 1                | 565       | -         | -       | _     | _        | _    |
| Stage 2                | 513       | _         | _       | _     | _        | _    |
| Platoon blocked, %     | 010       |           |         | _     | _        | _    |
| Mov Cap-1 Maneuver     | 210       | 521       | 870     | _     | _        | _    |
| Mov Cap-1 Maneuver     | 210       | JZ 1<br>- | -       | _     | _        | _    |
| Stage 1                | 542       |           | _       | _     |          |      |
| ū                      | 513       | -         | -       | -     | -        | -    |
| Stage 2                | 313       | -         | -       | -     | -        | -    |
|                        |           |           |         |       |          |      |
| Approach               | EB        |           | NB      |       | SB       |      |
| HCM Control Delay, s   | 20.7      |           | 0.5     |       | 0        |      |
| HCM LOS                | С         |           |         |       |          |      |
|                        |           |           |         |       |          |      |
|                        |           |           |         |       |          |      |
| Minor Lane/Major Mvm   | <u>nt</u> | NBL       | NBTE    |       | SBT      | SBR  |
| Capacity (veh/h)       |           | 870       | -       | 307   | -        | -    |
| HCM Lane V/C Ratio     |           | 0.03      | -       | 0.257 | -        | -    |
| HCM Control Delay (s)  | )         | 9.3       | 0       | 20.7  | -        | -    |
| HCM Lane LOS           |           | Α         | Α       | С     | -        | -    |
| HCM 95th %tile Q(veh   | 1)        | 0.1       | -       | 1     | -        | -    |
|                        |           |           |         |       |          |      |

|                                   | *     | ۲     | *     | /     | 6    | K     |
|-----------------------------------|-------|-------|-------|-------|------|-------|
| Lane Group                        | WBL   | WBR   | NET   | NER   | SWL  | SWT   |
| Lane Configurations               | Y     |       | ĵ.    |       |      | 4     |
| Traffic Volume (vph)              | 34    | 6     | 10    | 37    | 6    | 6     |
| Future Volume (vph)               | 34    | 6     | 10    | 37    | 6    | 6     |
| Ideal Flow (vphpl)                | 1900  | 1900  | 1900  | 1900  | 1900 | 1900  |
| Grade (%)                         | 3%    |       | -4%   |       |      | 0%    |
| Lane Util. Factor                 | 1.00  | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  |
| Frt                               | 0.980 |       | 0.895 |       |      |       |
| Flt Protected                     | 0.959 |       |       |       |      | 0.976 |
| Satd. Flow (prot)                 | 1263  | 0     | 1407  | 0     | 0    | 1854  |
| Flt Permitted                     | 0.959 |       |       |       |      | 0.976 |
| Satd. Flow (perm)                 | 1263  | 0     | 1407  | 0     | 0    | 1854  |
| Link Speed (mph)                  | 30    |       | 30    |       |      | 30    |
| Link Distance (ft)                | 904   |       | 626   |       |      | 620   |
| Travel Time (s)                   | 20.5  |       | 14.2  |       |      | 14.1  |
| Peak Hour Factor                  | 0.59  | 0.59  | 0.80  | 0.80  | 0.88 | 0.88  |
| Heavy Vehicles (%)                | 46%   | 0%    | 10%   | 27%   | 0%   | 0%    |
| Adj. Flow (vph)                   | 58    | 10    | 13    | 46    | 7    | 7     |
| Shared Lane Traffic (%)           |       |       |       |       |      |       |
| Lane Group Flow (vph)             | 68    | 0     | 59    | 0     | 0    | 14    |
| Enter Blocked Intersection        | No    | No    | No    | No    | No   | No    |
| Lane Alignment                    | Left  | Right | Left  | Right | Left | Left  |
| Median Width(ft)                  | 12    |       | 0     |       |      | 0     |
| Link Offset(ft)                   | 0     |       | 0     |       |      | 0     |
| Crosswalk Width(ft)               | 16    |       | 16    |       |      | 16    |
| Two way Left Turn Lane            |       |       |       |       |      |       |
| Headway Factor                    | 1.02  | 1.02  | 0.97  | 0.97  | 1.00 | 1.00  |
| Turning Speed (mph)               | 15    | 9     |       | 9     | 15   |       |
| Sign Control                      | Stop  |       | Stop  |       |      | Stop  |
| Intersection Summary              |       |       |       |       |      |       |
| Area Type: O                      | ther  |       |       |       |      |       |
| O - utual Tomas Haratana di - a d |       |       |       |       |      |       |

| -                          |      |            |            |            |      |      |
|----------------------------|------|------------|------------|------------|------|------|
| Intersection               |      |            |            |            |      |      |
| Intersection Delay, s/veh  | 7.7  |            |            |            |      |      |
| Intersection LOS           | Α.   |            |            |            |      |      |
| Intersection LOS           |      |            |            |            |      |      |
|                            |      |            |            |            |      |      |
| Movement                   | WBL  | WBR        | NET        | NER        | SWL  | SWT  |
| Lane Configurations        | Y    |            | 1          |            |      | र्भ  |
| Traffic Vol, veh/h         | 34   | 6          | 10         | 37         | 6    | 6    |
| Future Vol, veh/h          | 34   | 6          | 10         | 37         | 6    | 6    |
| Peak Hour Factor           | 0.59 | 0.59       | 0.80       | 0.80       | 0.88 | 0.88 |
| Heavy Vehicles, %          | 46   | 0          | 10         | 27         | 0    | 0    |
| Mvmt Flow                  | 58   | 10         | 13         | 46         | 7    | 7    |
| Number of Lanes            | 1    | 0          | 1          | 0          | 0    | 1    |
|                            |      |            |            |            |      |      |
| Approach                   | WB   |            | NE         |            | SW   |      |
| Opposing Approach          |      |            | SW         |            | NE   |      |
| Opposing Lanes             | 0    |            | 1          |            | 1    |      |
| Conflicting Approach Left  | NE   |            |            |            | WB   |      |
| Conflicting Lanes Left     | 1    |            | 0          |            | 1    |      |
| Conflicting Approach Right | SW   |            | WB         |            |      |      |
| Conflicting Lanes Right    | 1    |            | 1          |            | 0    |      |
| HCM Control Delay          | 8.4  |            | 7          |            | 7.3  |      |
| HCM LOS                    | Α    |            | Α          |            | Α    |      |
|                            |      |            |            |            |      |      |
| Lane                       | _    | NELn1      | WBLn1      | SWLn1      |      |      |
| Vol Left, %                |      | 0%         | 85%        | 50%        |      |      |
| Vol Thru, %                |      | 21%        | 03%        | 50%        |      |      |
| Vol Right, %               |      | 79%        | 15%        | 0%         |      |      |
| Sign Control               |      | Stop       | Stop       | Stop       |      |      |
| Traffic Vol by Lane        |      | 310p<br>47 | 310p<br>40 | 310p<br>12 |      |      |
| LT Vol                     |      | 0          | 34         | 6          |      |      |
|                            |      |            | 0          | 6          |      |      |
| Through Vol                |      | 10         |            |            |      |      |
| RT Vol                     |      | 37         | 6          | 0          |      |      |
| Lane Flow Rate             |      | 59         | 68         | 14         |      |      |
| Geometry Grp               |      | 1          | 1          | 1          |      |      |
| Degree of Util (X)         |      | 0.061      | 0.092      | 0.016      |      |      |
| Departure Headway (Hd)     |      | 3.726      | 4.887      | 4.163      |      |      |
| Convergence, Y/N           |      | Yes        | Yes        | Yes        |      |      |
| Cap                        |      | 950        | 734        | 850        |      |      |
| Service Time               |      | 1.792      | 2.913      | 2.235      |      |      |
| HCM Lane V/C Ratio         |      | 0.062      | 0.093      | 0.016      |      |      |
| HCM Control Delay          |      | 7          | 8.4        | 7.3        |      |      |
| HCM Lang LOC               |      | Λ          | Λ          | ۸          |      |      |

**HCM Lane LOS** 

HCM 95th-tile Q

Α

0.3

0.2

Α

0

## 2023 Existing Traffic Volumes 4: Main Street /Channingville Road & Reed Avenue

|                            | •     | *     | 1    | 1    | ļ     | 1     |
|----------------------------|-------|-------|------|------|-------|-------|
| Lane Group                 | EBL   | EBR   | NBL  | NBT  | SBT   | SBR   |
| Lane Configurations        | M     |       |      | ર્ન  | ĵ.    |       |
| Traffic Volume (vph)       | 8     | 0     | 0    | 119  | 159   | 4     |
| Future Volume (vph)        | 8     | 0     | 0    | 119  | 159   | 4     |
| Ideal Flow (vphpl)         | 1900  | 1900  | 1900 | 1900 | 1900  | 1900  |
| Grade (%)                  | 9%    |       |      | 6%   | -12%  |       |
| Lane Util. Factor          | 1.00  | 1.00  | 1.00 | 1.00 | 1.00  | 1.00  |
| Frt                        |       |       |      |      | 0.997 |       |
| Flt Protected              | 0.950 |       |      |      |       |       |
| Satd. Flow (prot)          | 1724  | 0     | 0    | 1722 | 1929  | 0     |
| Flt Permitted              | 0.950 |       |      |      |       |       |
| Satd. Flow (perm)          | 1724  | 0     | 0    | 1722 | 1929  | 0     |
| Link Speed (mph)           | 30    |       |      | 30   | 30    |       |
| Link Distance (ft)         | 572   |       |      | 413  | 453   |       |
| Travel Time (s)            | 13.0  |       |      | 9.4  | 10.3  |       |
| Peak Hour Factor           | 0.67  | 0.67  | 0.68 | 0.68 | 0.77  | 0.77  |
| Heavy Vehicles (%)         | 0%    | 0%    | 0%   | 7%   | 3%    | 50%   |
| Adj. Flow (vph)            | 12    | 0     | 0    | 175  | 206   | 5     |
| Shared Lane Traffic (%)    |       |       |      |      |       |       |
| Lane Group Flow (vph)      | 12    | 0     | 0    | 175  | 211   | 0     |
| Enter Blocked Intersection | No    | No    | No   | No   | No    | No    |
| Lane Alignment             | Left  | Right | Left | Left | Left  | Right |
| Median Width(ft)           | 12    |       |      | 0    | 0     |       |
| Link Offset(ft)            | 0     |       |      | 0    | 0     |       |
| Crosswalk Width(ft)        | 16    |       |      | 16   | 16    |       |
| Two way Left Turn Lane     |       |       |      |      |       |       |
| Headway Factor             | 1.06  | 1.06  | 1.04 | 1.04 | 0.93  | 0.93  |
| Turning Speed (mph)        | 15    | 9     | 15   |      |       | 9     |
| Sign Control               | Stop  |       |      | Stop | Stop  |       |
| Intersection Summary       |       |       |      |      |       |       |
| Area Type: C               | Other |       |      |      |       |       |

| Intersection               |      |       |       |             |      |      |
|----------------------------|------|-------|-------|-------------|------|------|
| Intersection Delay, s/veh  | 8.3  |       |       |             |      |      |
| Intersection LOS           | Α.5  |       |       |             |      |      |
| Into Soution 200           |      |       |       |             |      |      |
| Mayamant                   | EDI  | EDD   | MDI   | NDT         | CDT  | CDD  |
| Movement                   | EBL  | EBR   | NBL   | NBT         | SBT  | SBR  |
| Lane Configurations        | M    |       | •     | 4           | 150  |      |
| Traffic Vol, veh/h         | 8    | 0     | 0     | 119         | 159  | 4    |
| Future Vol, veh/h          | 8    | 0     | 0     | 119         | 159  | 4    |
| Peak Hour Factor           | 0.67 | 0.67  | 0.68  | 0.68        | 0.77 | 0.77 |
| Heavy Vehicles, %          | 0    | 0     | 0     | 7           | 3    | 50   |
| Mvmt Flow                  | 12   | 0     | 0     | 175         | 206  | 5    |
| Number of Lanes            | 1    | 0     | 0     | 1           | 1    | 0    |
| Approach                   | EB   |       |       | NB          | SB   |      |
| Opposing Approach          |      |       |       | SB          | NB   |      |
| Opposing Lanes             | 0    |       |       | 1           | 1    |      |
| Conflicting Approach Left  | SB   |       |       | EB          |      |      |
| Conflicting Lanes Left     | 1    |       |       | 1           | 0    |      |
| Conflicting Approach Right | NB   |       |       | •           | EB   |      |
| Conflicting Lanes Right    | 1    |       |       | 0           | 1    |      |
| HCM Control Delay          | 8    |       |       | 8.3         | 8.4  |      |
| HCM LOS                    | A    |       |       | A           | A    |      |
|                            |      |       |       |             |      |      |
| Lane                       |      | NBLn1 | EBLn1 | SBLn1       |      |      |
| Vol Left, %                |      | 0%    | 100%  | 0%          |      |      |
| Vol Thru, %                |      | 100%  | 0%    | 98%         |      |      |
| Vol Right, %               |      | 0%    | 0%    | 2%          |      |      |
| Sign Control               |      | Stop  | Stop  | Stop        |      |      |
| Traffic Vol by Lane        |      | 310p  | 310p  | 310p<br>163 |      |      |
| LT Vol                     |      | 0     | 8     | 0           |      |      |
|                            |      | 119   |       | 159         |      |      |
| Through Vol<br>RT Vol      |      |       | 0     |             |      |      |
|                            |      | 175   | 0     | 4           |      |      |
| Lane Flow Rate             |      | 175   | 12    | 212         |      |      |
| Geometry Grp               |      | 1     | 1     | 1           |      |      |
| Degree of Util (X)         |      | 0.204 | 0.016 | 0.24        |      |      |
| Departure Headway (Hd)     |      | 4.198 | 4.935 | 4.089       |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes         |      |      |
| Cap                        |      | 849   | 730   | 872         |      |      |
| Service Time               |      | 2.252 | 2.935 | 2.139       |      |      |
| HCM Lane V/C Ratio         |      | 0.206 | 0.016 | 0.243       |      |      |
| HCM Control Delay          |      | 8.3   | 8     | 8.4         |      |      |
| HCM Lane LOS               |      | Α     | Α     | Α           |      |      |
| LIOMA OF IL I'IL O         |      | 0.0   | _     | 0.0         |      |      |

HCM 95th-tile Q

8.0

0.9

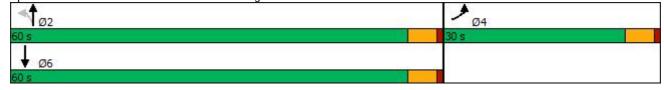
|                            | ٠     | •      | 1         | 1         | Ţ     | 1      |
|----------------------------|-------|--------|-----------|-----------|-------|--------|
| Lane Group                 | EBL   | EBR    | NBL       | NBT       | SBT   | SBR    |
| Lane Configurations        | W     |        |           | 4         | 1     |        |
| Traffic Volume (vph)       | 95    | 90     | 90        | 429       | 336   | 86     |
| Future Volume (vph)        | 95    | 90     | 90        | 429       | 336   | 86     |
| Ideal Flow (vphpl)         | 1900  | 1900   | 1900      | 1900      | 1900  | 1900   |
| Lane Width (ft)            | 13    | 12     | 12        | 16        | 12    | 12     |
| Grade (%)                  | 2%    |        |           | 1%        | 1%    |        |
| Lane Util. Factor          | 1.00  | 1.00   | 1.00      | 1.00      | 1.00  | 1.00   |
| Frt                        | 0.934 |        |           |           | 0.972 |        |
| Flt Protected              | 0.975 |        |           | 0.991     |       |        |
| Satd. Flow (prot)          | 1588  | 0      | 0         | 1977      | 1665  | 0      |
| Flt Permitted              | 0.975 |        |           | 0.859     |       |        |
| Satd. Flow (perm)          | 1588  | 0      | 0         | 1714      | 1665  | 0      |
| Right Turn on Red          |       | Yes    |           |           |       | Yes    |
| Satd. Flow (RTOR)          | 53    |        |           |           | 26    |        |
| Link Speed (mph)           | 30    |        |           | 40        | 40    |        |
| Link Distance (ft)         | 318   |        |           | 1043      | 324   |        |
| Travel Time (s)            | 7.2   |        |           | 17.8      | 5.5   |        |
| Peak Hour Factor           | 0.95  | 0.95   | 0.95      | 0.95      | 0.95  | 0.95   |
| Heavy Vehicles (%)         | 9%    | 14%    | 14%       | 6%        | 11%   | 8%     |
| Adj. Flow (vph)            | 100   | 95     | 95        | 452       | 354   | 91     |
| Shared Lane Traffic (%)    | 100   | 75     | /3        | 102       | 337   | 71     |
| Lane Group Flow (vph)      | 195   | 0      | 0         | 547       | 445   | 0      |
| Enter Blocked Intersection | No    | No     | No        | No        | No    | No     |
| Lane Alignment             | Left  | Right  | Left      | Left      | Left  | Right  |
| Median Width(ft)           | 13    | Rigiti | Leit      | Leit<br>0 | 0     | Rigiti |
| Link Offset(ft)            | 0     |        |           | 0         | 0     |        |
| Crosswalk Width(ft)        | 16    |        |           | 16        | 16    |        |
| Two way Left Turn Lane     | 10    |        |           | 10        | 10    |        |
|                            | 0.97  | 1.01   | 1.01      | 0.85      | 1.01  | 1.01   |
| Headway Factor             | 0.97  | 1.01   | 1.01      | 0.85      | 1.01  | 1.01   |
| Turning Speed (mph)        |       | 9      |           | 1         | 1     | 9      |
| Number of Detectors        | 1     |        | 1<br>Loft | 1         | 1     |        |
| Detector Template          | 25    |        | Left      | ,         | ,     |        |
| Leading Detector (ft)      | 35    |        | 20        | 6         | 6     |        |
| Trailing Detector (ft)     | -5    |        | 0         | 0         | 0     |        |
| Detector 1 Position(ft)    | -5    |        | 0         | 0         | 0     |        |
| Detector 1 Size(ft)        | 40    |        | 20        | 6         | 6     |        |
| Detector 1 Type            | CI+Ex |        | CI+Ex     | CI+Ex     | CI+Ex |        |
| Detector 1 Channel         |       |        |           |           |       |        |
| Detector 1 Extend (s)      | 0.0   |        | 0.0       | 0.0       | 0.0   |        |
| Detector 1 Queue (s)       | 0.0   |        | 0.0       | 0.0       | 0.0   |        |
| Detector 1 Delay (s)       | 0.0   |        | 0.0       | 0.0       | 0.0   |        |
| Turn Type                  | Prot  |        | Perm      | NA        | NA    |        |
| Protected Phases           | 4     |        |           | 2         | 6     |        |
| Permitted Phases           |       |        | 2         |           |       |        |
| Detector Phase             | 4     |        | 2         | 2         | 6     |        |
| Switch Phase               |       |        |           |           |       |        |
| Minimum Initial (s)        | 5.0   |        | 5.0       | 5.0       | 5.0   |        |
| Minimum Split (s)          | 23.0  |        | 23.0      | 23.0      | 23.0  |        |
| Total Split (s)            | 30.0  |        | 60.0      | 60.0      | 60.0  |        |
| Total Split (%)            | 33.3% |        | 66.7%     | 66.7%     | 66.7% |        |
| Maximum Green (s)          | 25.0  |        | 55.0      | 55.0      | 55.0  |        |
| Yellow Time (s)            | 4.0   |        | 4.0       | 4.0       | 4.0   |        |
| All-Red Time (s)           | 1.0   |        | 1.0       | 1.0       | 1.0   |        |
| (5)                        | 1.0   |        | 1.0       | 1.0       | 1.0   |        |

Synchro 11 Report Page 1

Job# 16003191A - R.H.

|                         | •    | *   | 1   | Î    | <b>↓</b> | ₹   |  |
|-------------------------|------|-----|-----|------|----------|-----|--|
| Lane Group              | EBL  | EBR | NBL | NBT  | SBT      | SBR |  |
| Lost Time Adjust (s)    | 0.0  |     |     | 0.0  | 0.0      |     |  |
| Total Lost Time (s)     | 5.0  |     |     | 5.0  | 5.0      |     |  |
| Lead/Lag                |      |     |     |      |          |     |  |
| Lead-Lag Optimize?      |      |     |     |      |          |     |  |
| Vehicle Extension (s)   | 2.0  |     | 2.0 | 2.0  | 2.0      |     |  |
| Recall Mode             | None |     | Max | Max  | Max      |     |  |
| Walk Time (s)           |      |     |     |      | 7.0      |     |  |
| Flash Dont Walk (s)     |      |     |     |      | 11.0     |     |  |
| Pedestrian Calls (#/hr) |      |     |     |      | 0        |     |  |
| v/c Ratio               | 0.69 |     |     | 0.44 | 0.37     |     |  |
| Control Delay           | 35.2 |     |     | 6.5  | 5.5      |     |  |
| Queue Delay             | 0.0  |     |     | 0.0  | 0.0      |     |  |
| Total Delay             | 35.2 |     |     | 6.5  | 5.5      |     |  |
| Queue Length 50th (ft)  | 64   |     |     | 86   | 60       |     |  |
| Queue Length 95th (ft)  | 129  |     |     | 190  | 138      |     |  |
| Internal Link Dist (ft) | 238  |     |     | 963  | 244      |     |  |
| Turn Bay Length (ft)    |      |     |     |      |          |     |  |
| Base Capacity (vph)     | 555  |     |     | 1233 | 1205     |     |  |
| Starvation Cap Reductn  | 0    |     |     | 0    | 0        |     |  |
| Spillback Cap Reductn   | 0    |     |     | 0    | 0        |     |  |
| Storage Cap Reductn     | 0    |     |     | 0    | 0        |     |  |
| Reduced v/c Ratio       | 0.35 |     |     | 0.44 | 0.37     |     |  |
| Intersection Summary    |      |     |     |      |          |     |  |

Area Type: Other


Cycle Length: 90

Actuated Cycle Length: 76.7

Natural Cycle: 50

Control Type: Semi Act-Uncoord

Splits and Phases: 1: NYS Route 9D & Delavergne Avenue



|                              | ۶         | •        | 4        | 1        | ļ        | 1    |
|------------------------------|-----------|----------|----------|----------|----------|------|
| Movement                     | EBL       | EBR      | NBL      | NBT      | SBT      | SBR  |
| Lane Configurations          | Y         |          |          | र्स      | ß        |      |
| Traffic Volume (veh/h)       | 95        | 90       | 90       | 429      | 336      | 86   |
| Future Volume (veh/h)        | 95        | 90       | 90       | 429      | 336      | 86   |
| Initial Q (Qb), veh          | 0         | 0        | 0        | 0        | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00      | 1.00     | 1.00     | -        | -        | 1.00 |
| Parking Bus, Adj             | 1.00      | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |
| Work Zone On Approach        | No        | 1.00     | 1.00     | No       | No       | 1.00 |
| Adj Sat Flow, veh/h/ln       | 1813      | 1669     | 1687     | 1877     | 1731     | 1776 |
| Adj Flow Rate, veh/h         | 1013      | 95       | 95       | 452      | 354      | 91   |
| Peak Hour Factor             | 0.95      | 0.95     | 0.95     | 0.95     | 0.95     | 0.95 |
| Percent Heavy Veh, %         | 9         | 14       | 14       | 0.93     | 11       | 0.95 |
|                              | 121       |          | 222      |          | 961      | 247  |
| Cap, veh/h                   |           | 114      |          | 1028     |          |      |
| Arrive On Green              | 0.15      | 0.15     | 0.72     | 0.72     | 0.72     | 0.72 |
| Sat Flow, veh/h              | 831       | 790      | 231      | 1421     | 1328     | 341  |
| Grp Volume(v), veh/h         | 196       | 0        | 547      | 0        | 0        | 445  |
| Grp Sat Flow(s), veh/h/ln    | 1629      | 0        | 1651     | 0        | 0        | 1670 |
| Q Serve(g_s), s              | 8.9       | 0.0      | 0.0      | 0.0      | 0.0      | 7.6  |
| Cycle Q Clear(g_c), s        | 8.9       | 0.0      | 8.6      | 0.0      | 0.0      | 7.6  |
| Prop In Lane                 | 0.51      | 0.48     | 0.17     |          |          | 0.20 |
| Lane Grp Cap(c), veh/h       | 236       | 0        | 1250     | 0        | 0        | 1208 |
| V/C Ratio(X)                 | 0.83      | 0.00     | 0.44     | 0.00     | 0.00     | 0.37 |
| Avail Cap(c_a), veh/h        | 536       | 0        | 1250     | 0        | 0        | 1208 |
| HCM Platoon Ratio            | 1.00      | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |
| Upstream Filter(I)           | 1.00      | 0.00     | 1.00     | 0.00     | 0.00     | 1.00 |
| Uniform Delay (d), s/veh     | 31.6      | 0.0      | 4.1      | 0.0      | 0.0      | 4.0  |
| Incr Delay (d2), s/veh       | 2.9       | 0.0      | 1.1      | 0.0      | 0.0      | 0.9  |
| Initial Q Delay(d3),s/veh    | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 3.6       | 0.0      | 2.3      | 0.0      | 0.0      | 1.8  |
| Unsig. Movement Delay, s/vel |           | 0.0      | 2.3      | 0.0      | 0.0      | 1.0  |
| LnGrp Delay(d),s/veh         | 34.5      | 0.0      | 5.2      | 0.0      | 0.0      | 4.8  |
| LnGrp LOS                    | 34.5<br>C | 0.0<br>A | 5.2<br>A | 0.0<br>A | 0.0<br>A |      |
|                              |           | А        | А        |          |          | A    |
| Approach Vol, veh/h          | 196       |          |          | 547      | 445      |      |
| Approach Delay, s/veh        | 34.5      |          |          | 5.2      | 4.8      |      |
| Approach LOS                 | С         |          |          | Α        | Α        |      |
| Timer - Assigned Phs         |           | 2        |          | 4        |          | 6    |
| Phs Duration (G+Y+Rc), s     |           | 60.0     |          | 16.0     |          | 60.0 |
| Change Period (Y+Rc), s      |           | 5.0      |          | 5.0      |          | 5.0  |
| Max Green Setting (Gmax), s  |           | 55.0     |          | 25.0     |          | 55.0 |
| Max Q Clear Time (g_c+l1), s |           | 10.6     |          | 10.9     |          | 9.6  |
| Green Ext Time (p_c), s      | ,         | 0.7      |          | 0.3      |          | 0.5  |
| " - /                        |           | 0.7      |          | 0.5      |          | 0.0  |
| Intersection Summary         |           |          |          |          |          |      |
| HCM 6th Ctrl Delay           |           |          | 9.9      |          |          |      |
| HCM 6th LOS                  |           |          | Α        |          |          |      |
| Notes                        |           |          |          |          |          |      |

User approved volume balancing among the lanes for turning movement.

|                            | •     | *     | 1    | Ť     | ļ     | 4     |
|----------------------------|-------|-------|------|-------|-------|-------|
| Lane Group                 | EBL   | EBR   | NBL  | NBT   | SBT   | SBR   |
| Lane Configurations        | Y     |       |      | ર્ન   | 13    | •     |
| Traffic Volume (vph)       | 24    | 28    | 27   | 498   | 395   | 31    |
| Future Volume (vph)        | 24    | 28    | 27   | 498   | 395   | 31    |
| Ideal Flow (vphpl)         | 1900  | 1900  | 1900 | 1900  | 1900  | 1900  |
| Grade (%)                  | 2%    |       |      | 3%    | -1%   |       |
| Lane Util. Factor          | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00  |
| Frt                        | 0.928 |       |      |       | 0.990 |       |
| Flt Protected              | 0.977 |       |      | 0.997 |       |       |
| Satd. Flow (prot)          | 1338  | 0     | 0    | 1724  | 1783  | 0     |
| Flt Permitted              | 0.977 |       |      | 0.997 |       |       |
| Satd. Flow (perm)          | 1338  | 0     | 0    | 1724  | 1783  | 0     |
| Link Speed (mph)           | 30    |       |      | 30    | 30    |       |
| Link Distance (ft)         | 904   |       |      | 139   | 1043  |       |
| Travel Time (s)            | 20.5  |       |      | 3.2   | 23.7  |       |
| Peak Hour Factor           | 0.62  | 0.62  | 0.95 | 0.95  | 0.83  | 0.83  |
| Heavy Vehicles (%)         | 20%   | 34%   | 50%  | 6%    | 6%    | 6%    |
| Adj. Flow (vph)            | 39    | 45    | 28   | 524   | 476   | 37    |
| Shared Lane Traffic (%)    |       |       |      |       |       |       |
| Lane Group Flow (vph)      | 84    | 0     | 0    | 552   | 513   | 0     |
| Enter Blocked Intersection | No    | No    | No   | No    | No    | No    |
| Lane Alignment             | Left  | Right | Left | Left  | Left  | Right |
| Median Width(ft)           | 12    |       |      | 0     | 0     |       |
| Link Offset(ft)            | 0     |       |      | 0     | 0     |       |
| Crosswalk Width(ft)        | 16    |       |      | 16    | 16    |       |
| Two way Left Turn Lane     |       |       |      |       |       |       |
| Headway Factor             | 1.01  | 1.01  | 1.02 | 1.02  | 0.99  | 0.99  |
| Turning Speed (mph)        | 15    | 9     | 15   |       |       | 9     |
| Sign Control               | Stop  |       |      | Free  | Free  |       |
| Intersection Summary       |       |       |      |       |       |       |
| Area Type: (               | Other |       |      |       |       |       |

Area Type: Control Type: Unsignalized

| Intersection           |        |       |         |       |         |        |
|------------------------|--------|-------|---------|-------|---------|--------|
| Int Delay, s/veh       | 1.9    |       |         |       |         |        |
| Movement               | EBL    | EBR   | NBL     | NBT   | SBT     | SBR    |
| Lane Configurations    | W      |       |         | 4     | 1       |        |
| Traffic Vol, veh/h     | 24     | 28    | 27      | 498   | 395     | 31     |
| Future Vol, veh/h      | 24     | 28    | 27      | 498   | 395     | 31     |
| Conflicting Peds, #/hr | 0      | 0     | 0       | 0     | 0       | 0      |
| Sign Control           | Stop   | Stop  | Free    | Free  | Free    | Free   |
| RT Channelized         | -      | None  |         | None  | -       |        |
| Storage Length         | 0      | -     | _       | -     | _       | -      |
| Veh in Median Storage  |        | -     | -       | 0     | 0       | -      |
| Grade, %               | 2      | _     | _       | 3     | -1      | _      |
| Peak Hour Factor       | 62     | 62    | 95      | 95    | 83      | 83     |
|                        |        |       | 50      |       |         |        |
| Heavy Vehicles, %      | 20     | 34    |         | 6     | 6       | 6      |
| Mvmt Flow              | 39     | 45    | 28      | 524   | 476     | 37     |
|                        |        |       |         |       |         |        |
| Major/Minor N          | linor2 | ١     | /lajor1 | N     | /lajor2 |        |
| Conflicting Flow All   | 1075   | 495   | 513     | 0     |         | 0      |
| Stage 1                | 495    | -     | -       | -     | _       | -      |
| Stage 2                | 580    | _     | _       | _     | _       | _      |
| Critical Hdwy          | 7      | 6.74  | 4.6     | _     | _       | _      |
| Critical Hdwy Stg 1    | 6      | -     | -       | _     | _       | _      |
| Critical Hdwy Stg 2    | 6      | _     | -       | _     | _       |        |
|                        |        | 3.606 | 2.65    | -     |         | _      |
| Follow-up Hdwy         |        |       |         | -     |         |        |
| Pot Cap-1 Maneuver     | 199    | 501   | 847     | -     | -       | -      |
| Stage 1                | 546    | -     | -       | -     | -       | -      |
| Stage 2                | 493    | -     | -       | -     | -       | -      |
| Platoon blocked, %     |        |       |         | -     | -       | -      |
| Mov Cap-1 Maneuver     | 190    | 501   | 847     | -     | -       | -      |
| Mov Cap-2 Maneuver     | 190    | -     | -       | -     | -       | -      |
| Stage 1                | 520    | -     | -       | -     | -       | -      |
| Stage 2                | 493    | -     | -       | -     | -       | -      |
| 3                      |        |       |         |       |         |        |
| A                      | ED     |       | ND      |       | CD      |        |
| Approach               | EB     |       | NB      |       | SB      |        |
| HCM Control Delay, s   | 22.8   |       | 0.5     |       | 0       |        |
| HCM LOS                | С      |       |         |       |         |        |
|                        |        |       |         |       |         |        |
| Minor Lane/Major Mvm   | nt     | NBL   | NBTE    | BLn1  | SBT     | SBR    |
| Capacity (veh/h)       |        | 847   | -       | 285   |         | - JUIC |
| HCM Lane V/C Ratio     |        | 0.034 |         | 0.294 | -       | -      |
|                        |        |       | _       |       | -       | -      |
| HCM Control Delay (s)  |        | 9.4   | 0       | 22.8  | -       | -      |
| HCM Lane LOS           |        | A     | Α       | C     | -       | -      |
| HCM 95th %tile Q(veh   | )      | 0.1   | -       | 1.2   | -       | -      |
|                        |        |       |         |       |         |        |

|                                        | *     | •     | *              | /     | 6    | ×     |
|----------------------------------------|-------|-------|----------------|-------|------|-------|
| Lane Group                             | WBL   | WBR   | NET            | NER   | SWL  | SWT   |
| Lane Configurations                    | Y     |       | T <sub>3</sub> |       |      | र्स   |
| Traffic Volume (vph)                   | 36    | 6     | 11             | 39    | 6    | 6     |
| Future Volume (vph)                    | 36    | 6     | 11             | 39    | 6    | 6     |
| Ideal Flow (vphpl)                     | 1900  | 1900  | 1900           | 1900  | 1900 | 1900  |
| Grade (%)                              | 3%    |       | -4%            |       |      | 0%    |
| Lane Util. Factor                      | 1.00  | 1.00  | 1.00           | 1.00  | 1.00 | 1.00  |
| Frt                                    | 0.981 |       | 0.895          |       |      |       |
| Flt Protected                          | 0.959 |       |                |       |      | 0.976 |
| Satd. Flow (prot)                      | 1262  | 0     | 1408           | 0     | 0    | 1854  |
| Flt Permitted                          | 0.959 |       |                |       |      | 0.976 |
| Satd. Flow (perm)                      | 1262  | 0     | 1408           | 0     | 0    | 1854  |
| Link Speed (mph)                       | 30    |       | 30             |       |      | 30    |
| Link Distance (ft)                     | 904   |       | 626            |       |      | 620   |
| Travel Time (s)                        | 20.5  |       | 14.2           |       |      | 14.1  |
| Peak Hour Factor                       | 0.59  | 0.59  | 0.80           | 0.80  | 0.88 | 0.88  |
| Heavy Vehicles (%)                     | 46%   | 0%    | 10%            | 27%   | 0%   | 0%    |
| Adj. Flow (vph)                        | 61    | 10    | 14             | 49    | 7    | 7     |
| Shared Lane Traffic (%)                |       |       |                |       |      |       |
| Lane Group Flow (vph)                  | 71    | 0     | 63             | 0     | 0    | 14    |
| Enter Blocked Intersection             | No    | No    | No             | No    | No   | No    |
| Lane Alignment                         | Left  | Right | Left           | Right | Left | Left  |
| Median Width(ft)                       | 12    | J     | 0              | - J   |      | 0     |
| Link Offset(ft)                        | 0     |       | 0              |       |      | 0     |
| Crosswalk Width(ft)                    | 16    |       | 16             |       |      | 16    |
| Two way Left Turn Lane                 |       |       |                |       |      |       |
| Headway Factor                         | 1.02  | 1.02  | 0.97           | 0.97  | 1.00 | 1.00  |
| Turning Speed (mph)                    | 15    | 9     |                | 9     | 15   |       |
| Sign Control                           | Stop  |       | Stop           |       |      | Stop  |
| Intersection Summary                   |       |       |                |       |      |       |
| Area Type:                             | )ther |       |                |       |      |       |
| O a satural Tamasa I Haradana albasa d |       |       |                |       |      |       |

| Intersection               |          |       |          |            |          |      |
|----------------------------|----------|-------|----------|------------|----------|------|
| Intersection Delay, s/veh  | 7.8      |       |          |            |          |      |
| Intersection LOS           | Α        |       |          |            |          |      |
|                            |          |       |          |            |          |      |
| Movement                   | WBL      | WBR   | NET      | NER        | SWL      | SWT  |
| Lane Configurations        | M        |       | 1        |            |          | 4    |
| Traffic Vol, veh/h         | 36       | 6     | 11       | 39         | 6        | 6    |
| Future Vol, veh/h          | 36       | 6     | 11       | 39         | 6        | 6    |
| Peak Hour Factor           | 0.59     | 0.59  | 0.80     | 0.80       | 0.88     | 0.88 |
| Heavy Vehicles, %          | 46       | 0     | 10       | 27         | 0        | 0    |
| Mvmt Flow                  | 61       | 10    | 14       | 49         | 7        | 7    |
| Number of Lanes            | 1        | 0     | 1        | 0          | 0        | 1    |
| Approach                   | WB       |       | NE       |            | SW       |      |
| Opposing Approach          | 770      |       | SW       |            | NE       |      |
| Opposing Lanes             | 0        |       | 3w       |            | 1        |      |
| Conflicting Approach Left  | NE       |       |          |            | WB       |      |
| Conflicting Lanes Left     | 1        |       | 0        |            | 1        |      |
| Conflicting Approach Right | SW       |       | WB       |            | 1        |      |
| Conflicting Lanes Right    | 1        |       | 1        |            | 0        |      |
| HCM Control Delay          | 8.5      |       | 7.1      |            | 7.3      |      |
| HCM LOS                    | 0.5<br>A |       | 7.1<br>A |            | 7.3<br>A |      |
| HOW LOO                    | A        |       |          |            |          |      |
| Lane                       |          | NELn1 | WBLn1    | SWI n1     |          |      |
| Vol Left, %                |          | 0%    | 86%      | 50%        |          |      |
| Vol Thru, %                |          | 22%   | 0%       | 50%        |          |      |
| Vol Right, %               |          | 78%   | 14%      | 0%         |          |      |
| Sign Control               |          | Stop  | Stop     | Stop       |          |      |
| Traffic Vol by Lane        |          | 50p   | 310p     | 310p<br>12 |          |      |
| LT Vol                     |          | 0     | 36       | 6          |          |      |
| Through Vol                |          | 11    | 0        | 6          |          |      |
| RT Vol                     |          | 39    | 6        | 0          |          |      |
| Lane Flow Rate             |          | 62    | 71       | 14         |          |      |
| Geometry Grp               |          | 1     | 1        | 1          |          |      |
| Degree of Util (X)         |          | 0.065 | 0.097    | 0.016      |          |      |
| Departure Headway (Hd)     |          | 3.736 | 4.901    | 4.173      |          |      |
| Convergence, Y/N           |          | Yes   | Yes      | Yes        |          |      |
| Cap                        |          | 947   | 732      | 848        |          |      |
| Service Time               |          | 1.807 | 2.926    | 2.248      |          |      |
| JOINICE THIIC              |          | 1.007 | 2.720    | 2.240      |          |      |

HCM Lane V/C Ratio

**HCM Control Delay** 

**HCM Lane LOS** 

HCM 95th-tile Q

0.065

7.1

Α

0.2

0.097

8.5

Α

0.3

0.017

7.3

Α

0

## 4: Main Street /Channingville Road & Reed Avenue

|                            | ۶     | 7     | 4    | 1    | ļ              | 1     |
|----------------------------|-------|-------|------|------|----------------|-------|
| Lane Group                 | EBL   | EBR   | NBL  | NBT  | SBT            | SBR   |
| Lane Configurations        | Y     |       |      | र्स  | T <sub>3</sub> |       |
| Traffic Volume (vph)       | 8     | 0     | 0    | 126  | 169            | 4     |
| Future Volume (vph)        | 8     | 0     | 0    | 126  | 169            | 4     |
| Ideal Flow (vphpl)         | 1900  | 1900  | 1900 | 1900 | 1900           | 1900  |
| Grade (%)                  | 9%    |       |      | 6%   | -12%           |       |
| Lane Util. Factor          | 1.00  | 1.00  | 1.00 | 1.00 | 1.00           | 1.00  |
| Frt                        |       |       |      |      | 0.997          |       |
| Flt Protected              | 0.950 |       |      |      |                |       |
| Satd. Flow (prot)          | 1724  | 0     | 0    | 1722 | 1930           | 0     |
| Flt Permitted              | 0.950 |       |      |      |                |       |
| Satd. Flow (perm)          | 1724  | 0     | 0    | 1722 | 1930           | 0     |
| Link Speed (mph)           | 30    |       |      | 30   | 30             |       |
| Link Distance (ft)         | 572   |       |      | 413  | 453            |       |
| Travel Time (s)            | 13.0  |       |      | 9.4  | 10.3           |       |
| Peak Hour Factor           | 0.67  | 0.67  | 0.68 | 0.68 | 0.77           | 0.77  |
| Heavy Vehicles (%)         | 0%    | 0%    | 0%   | 7%   | 3%             | 50%   |
| Adj. Flow (vph)            | 12    | 0     | 0    | 185  | 219            | 5     |
| Shared Lane Traffic (%)    |       |       |      |      |                |       |
| Lane Group Flow (vph)      | 12    | 0     | 0    | 185  | 224            | 0     |
| Enter Blocked Intersection | No    | No    | No   | No   | No             | No    |
| Lane Alignment             | Left  | Right | Left | Left | Left           | Right |
| Median Width(ft)           | 12    |       |      | 0    | 0              |       |
| Link Offset(ft)            | 0     |       |      | 0    | 0              |       |
| Crosswalk Width(ft)        | 16    |       |      | 16   | 16             |       |
| Two way Left Turn Lane     |       |       |      |      |                |       |
| Headway Factor             | 1.06  | 1.06  | 1.04 | 1.04 | 0.93           | 0.93  |
| Turning Speed (mph)        | 15    | 9     | 15   |      |                | 9     |
| Sign Control               | Stop  |       |      | Stop | Stop           |       |
| Intersection Summary       |       |       |      |      |                |       |
|                            | )ther |       |      |      |                |       |

Area Type: Othe

| Intersection               |       |       |       |          |          |      |
|----------------------------|-------|-------|-------|----------|----------|------|
| Intersection Delay, s/veh  | 8.5   |       |       |          |          |      |
| Intersection LOS           | A     |       |       |          |          |      |
|                            | - , , |       |       |          |          |      |
| Movement                   | EDI   | EDD   | NIDI  | NDT      | CDT      | CDD  |
| Movement                   | EBL   | EBR   | NBL   | NBT      | SBT      | SBR  |
| Lane Configurations        | Y     | •     |       | 4        | 1/0      |      |
| Traffic Vol, veh/h         | 8     | 0     | 0     | 126      | 169      | 4    |
| Future Vol, veh/h          | 8     | 0     | 0     | 126      | 169      | 4    |
| Peak Hour Factor           | 0.67  | 0.67  | 0.68  | 0.68     | 0.77     | 0.77 |
| Heavy Vehicles, %          | 0     | 0     | 0     | 7        | 3        | 50   |
| Mvmt Flow                  | 12    | 0     | 0     | 185      | 219      | 5    |
| Number of Lanes            | 1     | 0     | 0     | 1        | 1        | 0    |
| Approach                   | EB    |       |       | NB       | SB       |      |
| Opposing Approach          |       |       |       | SB       | NB       |      |
| Opposing Lanes             | 0     |       |       | 1        | 1        |      |
| Conflicting Approach Left  | SB    |       |       | EB       | -        |      |
| Conflicting Lanes Left     | 1     |       |       | 1        | 0        |      |
| Conflicting Approach Right | NB    |       |       | · ·      | EB       |      |
| Conflicting Lanes Right    | 1     |       |       | 0        | 1        |      |
| HCM Control Delay          | 8.1   |       |       | 8.4      | 8.6      |      |
| HCM LOS                    | 8. I  |       |       | 8.4<br>A | 8.6<br>A |      |
| HOIVI LUS                  | А     |       |       | А        | A        |      |
|                            |       |       |       |          |          |      |
| Lane                       |       | NBLn1 | EBLn1 | SBLn1    |          |      |
| Vol Left, %                |       | 0%    | 100%  | 0%       |          |      |
| Vol Thru, %                |       | 100%  | 0%    | 98%      |          |      |
| Vol Right, %               |       | 0%    | 0%    | 2%       |          |      |
| Sign Control               |       | Stop  | Stop  | Stop     |          |      |
| Traffic Vol by Lane        |       | 126   | 8     | 173      |          |      |
| LT Vol                     |       | 0     | 8     | 0        |          |      |
| Through Vol                |       | 126   | 0     | 169      |          |      |
| RT Vol                     |       | 0     | 0     | 4        |          |      |
| Lane Flow Rate             |       | 185   | 12    | 225      |          |      |
| Geometry Grp               |       | 1     | 1     | 1        |          |      |
| Degree of Util (X)         |       | 0.217 | 0.017 | 0.256    |          |      |
| Departure Headway (Hd)     |       | 4.208 | 4.987 | 4.097    |          |      |
| Convergence, Y/N           |       | Yes   | Yes   | Yes      |          |      |
| Cap                        |       | 847   | 722   | 869      |          |      |
| Service Time               |       | 2.268 | 2.987 | 2.153    |          |      |
| HCM Lane V/C Ratio         |       | 0.218 | 0.017 | 0.259    |          |      |
| HCM Control Delay          |       | 8.4   | 8.1   | 8.6      |          |      |
| ,                          |       |       |       |          |          |      |
| HCM Lane LOS               |       | Α     | Α     | Α        |          |      |

HCM 95th-tile Q

8.0

0.1

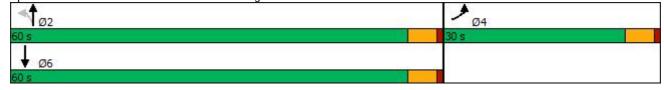
1

|                            | ۶          | •           | 1       | 1     | Ţ          | 1           |
|----------------------------|------------|-------------|---------|-------|------------|-------------|
| Lane Group                 | EBL        | EBR         | NBL     | NBT   | SBT        | SBR         |
| Lane Configurations        | **         |             |         | 4     | <b>\$</b>  |             |
| Traffic Volume (vph)       | 120        | 90          | 90      | 436   | 338        | 94          |
| Future Volume (vph)        | 120        | 90          | 90      | 436   | 338        | 94          |
| Ideal Flow (vphpl)         | 1900       | 1900        | 1900    | 1900  | 1900       | 1900        |
| Lane Width (ft)            | 13         | 12          | 12      | 16    | 12         | 12          |
| Grade (%)                  | 2%         |             |         | 1%    | 1%         |             |
| Lane Util. Factor          | 1.00       | 1.00        | 1.00    | 1.00  | 1.00       | 1.00        |
| Frt                        | 0.942      | 50          | 50      | 50    | 0.971      | 50          |
| Flt Protected              | 0.972      |             |         | 0.991 | 3.771      |             |
| Satd. Flow (prot)          | 1601       | 0           | 0       | 1978  | 1664       | 0           |
| Flt Permitted              | 0.972      |             |         | 0.858 |            |             |
| Satd. Flow (perm)          | 1601       | 0           | 0       | 1712  | 1664       | 0           |
| Right Turn on Red          | . 551      | Yes         |         |       | .001       | Yes         |
| Satd. Flow (RTOR)          | 42         | . 00        |         |       | 29         | . 00        |
| Link Speed (mph)           | 30         |             |         | 40    | 40         |             |
| Link Distance (ft)         | 318        |             |         | 1043  | 324        |             |
| Travel Time (s)            | 7.2        |             |         | 17.8  | 5.5        |             |
| Peak Hour Factor           | 0.95       | 0.95        | 0.95    | 0.95  | 0.95       | 0.95        |
| Heavy Vehicles (%)         | 9%         | 14%         | 14%     | 6%    | 11%        | 0.95<br>8%  |
|                            | 126        | 95          | 95      | 459   | 356        | 99          |
| Adj. Flow (vph)            | 120        | 90          | 90      | 409   | 330        | 99          |
| Shared Lane Traffic (%)    | 221        | 0           | 0       | ET 4  | 455        | 0           |
| Lane Group Flow (vph)      | 221<br>No. | 0           | 0       | 554   | 455        | 0           |
| Enter Blocked Intersection | No<br>Loft | No<br>Diabt | No      | No    | No<br>Loft | No<br>Diabt |
| Lane Alignment             | Left       | Right       | Left    | Left  | Left       | Right       |
| Median Width(ft)           | 13         |             |         | 0     | 0          |             |
| Link Offset(ft)            | 0          |             |         | 0     | 0          |             |
| Crosswalk Width(ft)        | 16         |             |         | 16    | 16         |             |
| Two way Left Turn Lane     |            |             | 4.51    | 0.05  | 4 4 4      | 4           |
| Headway Factor             | 0.97       | 1.01        | 1.01    | 0.85  | 1.01       | 1.01        |
| Turning Speed (mph)        | 15         | 9           | 15      |       |            | 9           |
| Number of Detectors        | 1          |             | 1       | 1     | 1          |             |
| Detector Template          |            |             | Left    |       |            |             |
| Leading Detector (ft)      | 35         |             | 20      | 6     | 6          |             |
| Trailing Detector (ft)     | -5         |             | 0       | 0     | 0          |             |
| Detector 1 Position(ft)    | -5         |             | 0       | 0     | 0          |             |
| Detector 1 Size(ft)        | 40         |             | 20      | 6     | 6          |             |
| Detector 1 Type            | CI+Ex      |             | CI+Ex   | CI+Ex | CI+Ex      |             |
| Detector 1 Channel         |            |             |         |       |            |             |
| Detector 1 Extend (s)      | 0.0        |             | 0.0     | 0.0   | 0.0        |             |
| Detector 1 Queue (s)       | 0.0        |             | 0.0     | 0.0   | 0.0        |             |
| Detector 1 Delay (s)       | 0.0        |             | 0.0     | 0.0   | 0.0        |             |
| Turn Type                  | Prot       |             | Perm    | NA    | NA         |             |
| Protected Phases           | 4          |             | . 51111 | 2     | 6          |             |
| Permitted Phases           | 7          |             | 2       |       | U          |             |
| Detector Phase             | 4          |             | 2       | 2     | 6          |             |
| Switch Phase               | 4          |             | ۷       |       | U          |             |
| Minimum Initial (s)        | 5.0        |             | 5.0     | 5.0   | 5.0        |             |
|                            |            |             |         |       |            |             |
| Minimum Split (s)          | 23.0       |             | 23.0    | 23.0  | 23.0       |             |
| Total Split (s)            | 30.0       |             | 60.0    | 60.0  | 60.0       |             |
| Total Split (%)            | 33.3%      |             | 66.7%   | 66.7% | 66.7%      |             |
| Maximum Green (s)          | 25.0       |             | 55.0    | 55.0  | 55.0       |             |
| Yellow Time (s)            | 10         |             | 4.0     | 4.0   | 4.0        |             |
| All-Red Time (s)           | 4.0<br>1.0 |             | 1.0     | 1.0   | 1.0        |             |

Synchro 11 Report Page 1

Job# 16003191A - R.H.

|                         | •     | •   | 1   | Ť    | <b>↓</b> | 1   |
|-------------------------|-------|-----|-----|------|----------|-----|
| Lane Group              | EBL   | EBR | NBL | NBT  | SBT      | SBR |
| Lost Time Adjust (s)    | 0.0   |     |     | 0.0  | 0.0      |     |
| Total Lost Time (s)     | 5.0   |     |     | 5.0  | 5.0      |     |
| Lead/Lag                |       |     |     |      |          |     |
| Lead-Lag Optimize?      |       |     |     |      |          |     |
| Vehicle Extension (s)   | 2.0   |     | 2.0 | 2.0  | 2.0      |     |
| Recall Mode             | None  |     | Max | Max  | Max      |     |
| Walk Time (s)           |       |     |     |      | 7.0      |     |
| Flash Dont Walk (s)     |       |     |     |      | 11.0     |     |
| Pedestrian Calls (#/hr) |       |     |     |      | 0        |     |
| v/c Ratio               | 0.72  |     |     | 0.46 | 0.39     |     |
| Control Delay           | 38.3  |     |     | 7.5  | 6.3      |     |
| Queue Delay             | 0.0   |     |     | 0.0  | 0.0      |     |
| Total Delay             | 38.3  |     |     | 7.5  | 6.3      |     |
| Queue Length 50th (ft)  | 83    |     |     | 99   | 69       |     |
| Queue Length 95th (ft)  | 154   |     |     | 215  | 157      |     |
| Internal Link Dist (ft) | 238   |     |     | 963  | 244      |     |
| Turn Bay Length (ft)    |       |     |     |      |          |     |
| Base Capacity (vph)     | 539   |     |     | 1202 | 1177     |     |
| Starvation Cap Reductn  | 0     |     |     | 0    | 0        |     |
| Spillback Cap Reductn   | 0     |     |     | 0    | 0        |     |
| Storage Cap Reductn     | 0     |     |     | 0    | 0        |     |
| Reduced v/c Ratio       | 0.41  |     |     | 0.46 | 0.39     |     |
| Intersection Summary    |       |     |     |      |          |     |
| Area Type:              | Other |     |     |      |          |     |
| Cycle Length: 90        |       |     |     |      |          |     |


Cycle Length: 90

Actuated Cycle Length: 78.6

Natural Cycle: 50

Control Type: Semi Act-Uncoord

Splits and Phases: 1: NYS Route 9D & Delavergne Avenue



|                              | ۶    | •    | 1    | <b>†</b> | ļ    | 1    |
|------------------------------|------|------|------|----------|------|------|
| Movement                     | EBL  | EBR  | NBL  | NBT      | SBT  | SBR  |
| Lane Configurations          | N/F  |      |      | 4        | 1    |      |
| Traffic Volume (veh/h)       | 120  | 90   | 90   | 436      | 338  | 94   |
| Future Volume (veh/h)        | 120  | 90   | 90   | 436      | 338  | 94   |
| Initial Q (Qb), veh          | 0    | 0    | 0    | 0        | 0    | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 | 1.00 | 1.00 |          |      | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 |
| Work Zone On Approach        | No   |      |      | No       | No   |      |
| Adj Sat Flow, veh/h/ln       | 1813 | 1669 | 1687 | 1877     | 1731 | 1776 |
| Adj Flow Rate, veh/h         | 126  | 95   | 95   | 459      | 356  | 99   |
| Peak Hour Factor             | 0.95 | 0.95 | 0.95 | 0.95     | 0.95 | 0.95 |
| Percent Heavy Veh, %         | 9    | 14   | 14   | 6        | 11   | 8    |
| Cap, veh/h                   | 149  | 113  | 216  | 1012     | 926  | 257  |
| Arrive On Green              | 0.16 | 0.16 | 0.71 | 0.71     | 0.71 | 0.71 |
| Sat Flow, veh/h              | 931  | 702  | 227  | 1424     | 1303 | 362  |
|                              |      |      |      |          |      |      |
| Grp Volume(v), veh/h         | 222  | 0    | 554  | 0        | 0    | 455  |
| Grp Sat Flow(s), veh/h/ln    | 1640 | 0    | 1651 | 0        | 0    | 1666 |
| Q Serve(g_s), s              | 10.2 | 0.0  | 0.0  | 0.0      | 0.0  | 8.4  |
| Cycle Q Clear(g_c), s        | 10.2 | 0.0  | 9.4  | 0.0      | 0.0  | 8.4  |
| Prop In Lane                 | 0.57 | 0.43 | 0.17 |          |      | 0.22 |
| Lane Grp Cap(c), veh/h       | 263  | 0    | 1227 | 0        | 0    | 1183 |
| V/C Ratio(X)                 | 0.84 | 0.00 | 0.45 | 0.00     | 0.00 | 0.38 |
| Avail Cap(c_a), veh/h        | 530  | 0    | 1227 | 0        | 0    | 1183 |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00 | 1.00 | 0.00     | 0.00 | 1.00 |
| Uniform Delay (d), s/veh     | 31.6 | 0.0  | 4.6  | 0.0      | 0.0  | 4.5  |
| Incr Delay (d2), s/veh       | 2.9  | 0.0  | 1.2  | 0.0      | 0.0  | 0.9  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 4.1  | 0.0  | 2.7  | 0.0      | 0.0  | 2.1  |
| Unsig. Movement Delay, s/ve  | eh   |      |      |          |      |      |
| LnGrp Delay(d),s/veh         | 34.4 | 0.0  | 5.8  | 0.0      | 0.0  | 5.4  |
| LnGrp LOS                    | С    | Α    | Α    | Α        | Α    | Α    |
| Approach Vol, veh/h          | 222  |      |      | 554      | 455  |      |
| Approach Delay, s/veh        | 34.4 |      |      | 5.8      | 5.4  |      |
| Approach LOS                 | С.   |      |      | Α        | Α    |      |
|                              | 0    |      |      |          | ,,   |      |
| Timer - Assigned Phs         |      | 2    |      | 4        |      | 6    |
| Phs Duration (G+Y+Rc), s     |      | 60.0 |      | 17.4     |      | 60.0 |
| Change Period (Y+Rc), s      |      | 5.0  |      | 5.0      |      | 5.0  |
| Max Green Setting (Gmax), s  | 6    | 55.0 |      | 25.0     |      | 55.0 |
| Max Q Clear Time (g_c+l1), s | S    | 11.4 |      | 12.2     |      | 10.4 |
| Green Ext Time (p_c), s      |      | 0.7  |      | 0.3      |      | 0.5  |
| Intersection Summary         |      |      |      |          |      |      |
| HCM 6th Ctrl Delay           |      |      | 10.8 |          |      |      |
| HCM 6th LOS                  |      |      | В    |          |      |      |
|                              |      |      |      |          |      |      |
| Notes                        |      |      |      |          |      |      |

User approved volume balancing among the lanes for turning movement.

|                            | ۶     | •     | 1    | 1     | ļ     | 1     |
|----------------------------|-------|-------|------|-------|-------|-------|
| Lane Group                 | EBL   | EBR   | NBL  | NBT   | SBT   | SBR   |
| Lane Configurations        | Y     |       |      | ર્ન   | 13    |       |
| Traffic Volume (vph)       | 31    | 52    | 35   | 498   | 395   | 33    |
| Future Volume (vph)        | 31    | 52    | 35   | 498   | 395   | 33    |
| Ideal Flow (vphpl)         | 1900  | 1900  | 1900 | 1900  | 1900  | 1900  |
| Grade (%)                  | 2%    |       |      | 3%    | -1%   |       |
| Lane Util. Factor          | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00  |
| Frt                        | 0.915 |       |      |       | 0.990 |       |
| Flt Protected              | 0.982 |       |      | 0.997 |       |       |
| Satd. Flow (prot)          | 1312  | 0     | 0    | 1713  | 1783  | 0     |
| Flt Permitted              | 0.982 |       |      | 0.997 |       |       |
| Satd. Flow (perm)          | 1312  | 0     | 0    | 1713  | 1783  | 0     |
| Link Speed (mph)           | 30    |       |      | 30    | 30    |       |
| Link Distance (ft)         | 904   |       |      | 139   | 1043  |       |
| Travel Time (s)            | 20.5  |       |      | 3.2   | 23.7  |       |
| Peak Hour Factor           | 0.62  | 0.62  | 0.95 | 0.95  | 0.83  | 0.83  |
| Heavy Vehicles (%)         | 20%   | 34%   | 50%  | 6%    | 6%    | 6%    |
| Adj. Flow (vph)            | 50    | 84    | 37   | 524   | 476   | 40    |
| Shared Lane Traffic (%)    |       |       |      |       |       |       |
| Lane Group Flow (vph)      | 134   | 0     | 0    | 561   | 516   | 0     |
| Enter Blocked Intersection | No    | No    | No   | No    | No    | No    |
| Lane Alignment             | Left  | Right | Left | Left  | Left  | Right |
| Median Width(ft)           | 12    |       |      | 0     | 0     |       |
| Link Offset(ft)            | 0     |       |      | 0     | 0     |       |
| Crosswalk Width(ft)        | 16    |       |      | 16    | 16    |       |
| Two way Left Turn Lane     |       |       |      |       |       |       |
| Headway Factor             | 1.01  | 1.01  | 1.02 | 1.02  | 0.99  | 0.99  |
| Turning Speed (mph)        | 15    | 9     | 15   |       |       | 9     |
| Sign Control               | Stop  |       |      | Free  | Free  |       |
| Intersection Summary       |       |       |      |       |       |       |
| Area Type: (               | Other |       |      |       |       |       |

| Intersection           |           |        |         |        |          |        |
|------------------------|-----------|--------|---------|--------|----------|--------|
| Int Delay, s/veh       | 3.2       |        |         |        |          |        |
| Movement               | EBL       | EBR    | NBL     | NBT    | SBT      | SBR    |
| Lane Configurations    | N/        | LDIN   | NDL     | 4      | <b>1</b> | JUIN   |
| Traffic Vol, veh/h     | 31        | 52     | 35      | 498    | 395      | 33     |
| Future Vol, veh/h      | 31        | 52     | 35      | 498    | 395      | 33     |
| Conflicting Peds, #/hr | 0         | 0      | 0       | 490    | 0        | 0      |
| Sign Control           |           | Stop   | Free    | Free   | Free     | Free   |
| RT Channelized         | Stop<br>- | None   |         | None   |          | None   |
| Storage Length         | 0         | None - | -       | None - | -        | None - |
|                        |           |        | -       |        | 0        | -      |
| Veh in Median Storage  |           | -      | -       | 0      |          |        |
| Grade, %               | 2         | -      | -<br>0F | 3      | -1       | -      |
| Peak Hour Factor       | 62        | 62     | 95      | 95     | 83       | 83     |
| Heavy Vehicles, %      | 20        | 34     | 50      | 6      | 6        | 6      |
| Mvmt Flow              | 50        | 84     | 37      | 524    | 476      | 40     |
|                        |           |        |         |        |          |        |
| Major/Minor M          | linor2    | N      | /lajor1 | ١      | /lajor2  |        |
| Conflicting Flow All   | 1094      | 496    | 516     | 0      |          | 0      |
| Stage 1                | 496       | -      | -       | -      | _        | -      |
| Stage 2                | 598       | _      | _       | -      | _        | _      |
| Critical Hdwy          | 7         | 6.74   | 4.6     | _      | _        | _      |
| Critical Hdwy Stg 1    | 6         | 0.71   | - 1.0   | _      | _        |        |
| Critical Hdwy Stg 2    | 6         | _      | _       | _      |          | _      |
| Follow-up Hdwy         |           | 3.606  | 2.65    | _      | _        | _      |
| Pot Cap-1 Maneuver     | 194       | 501    | 844     | -      | -        | -      |
|                        | 546       | 301    | 044     | -      | -        | -      |
| Stage 1                |           | -      | -       | -      | -        | -      |
| Stage 2                | 483       | -      | -       | -      | -        | -      |
| Platoon blocked, %     | 100       | F01    | 0.4.4   | -      | -        | -      |
| Mov Cap-1 Maneuver     | 182       | 501    | 844     | -      | -        | -      |
| Mov Cap-2 Maneuver     | 182       | -      | -       | -      | -        | -      |
| Stage 1                | 512       | -      | -       | -      | -        | -      |
| Stage 2                | 483       | -      | -       | -      | -        | -      |
|                        |           |        |         |        |          |        |
| Approach               | EB        |        | NB      |        | SB       |        |
| HCM Control Delay, s   | 26        |        | 0.6     |        | 0        |        |
| HCM LOS                | D         |        | 0.0     |        | U        |        |
| TIGINI EOS             | U         |        |         |        |          |        |
|                        |           |        |         |        |          |        |
| Minor Lane/Major Mvm   | nt        | NBL    | NBTE    | EBLn1  | SBT      | SBR    |
| Capacity (veh/h)       |           | 844    | -       | 303    | -        | -      |
| HCM Lane V/C Ratio     |           | 0.044  | -       | 0.442  | -        | -      |
| HCM Control Delay (s)  | )         | 9.5    | 0       | 26     | -        | -      |
| HCM Lane LOS           |           | Α      | Α       | D      | -        | -      |
| HCM 95th %tile Q(veh   | )         | 0.1    | -       | 2.2    | -        | -      |
|                        |           |        |         |        |          |        |

|                            | _     | ٤     | ×              | /     | 6    | ×     |
|----------------------------|-------|-------|----------------|-------|------|-------|
| Lane Group                 | WBL   | WBR   | NET            | NER   | SWL  | SWT   |
| Lane Configurations        | N.    |       | T <sub>3</sub> |       |      | ન     |
| Traffic Volume (vph)       | 46    | 6     | 39             | 71    | 6    | 16    |
| Future Volume (vph)        | 46    | 6     | 39             | 71    | 6    | 16    |
| Ideal Flow (vphpl)         | 1900  | 1900  | 1900           | 1900  | 1900 | 1900  |
| Grade (%)                  | 3%    |       | -4%            |       |      | 0%    |
| Lane Util. Factor          | 1.00  | 1.00  | 1.00           | 1.00  | 1.00 | 1.00  |
| Frt                        | 0.985 |       | 0.913          |       |      |       |
| Flt Protected              | 0.958 |       |                |       |      | 0.986 |
| Satd. Flow (prot)          | 1255  | 0     | 1463           | 0     | 0    | 1873  |
| Flt Permitted              | 0.958 |       |                |       |      | 0.986 |
| Satd. Flow (perm)          | 1255  | 0     | 1463           | 0     | 0    | 1873  |
| Link Speed (mph)           | 30    |       | 30             |       |      | 30    |
| Link Distance (ft)         | 904   |       | 626            |       |      | 620   |
| Travel Time (s)            | 20.5  |       | 14.2           |       |      | 14.1  |
| Peak Hour Factor           | 0.59  | 0.59  | 0.80           | 0.80  | 0.88 | 0.88  |
| Heavy Vehicles (%)         | 46%   | 0%    | 10%            | 27%   | 0%   | 0%    |
| Adj. Flow (vph)            | 78    | 10    | 49             | 89    | 7    | 18    |
| Shared Lane Traffic (%)    |       |       |                |       |      |       |
| Lane Group Flow (vph)      | 88    | 0     | 138            | 0     | 0    | 25    |
| Enter Blocked Intersection | No    | No    | No             | No    | No   | No    |
| Lane Alignment             | Left  | Right | Left           | Right | Left | Left  |
| Median Width(ft)           | 12    |       | 0              |       |      | 0     |
| Link Offset(ft)            | 0     |       | 0              |       |      | 0     |
| Crosswalk Width(ft)        | 16    |       | 16             |       |      | 16    |
| Two way Left Turn Lane     |       |       |                |       |      |       |
| Headway Factor             | 1.02  | 1.02  | 0.97           | 0.97  | 1.00 | 1.00  |
| Turning Speed (mph)        | 15    | 9     |                | 9     | 15   |       |
| Sign Control               | Stop  |       | Stop           |       |      | Stop  |
| Intersection Summary       |       |       |                |       |      |       |
| Area Type: O               | ther  |       |                |       |      |       |

| Intersection               |          |       |          |       |          |      |
|----------------------------|----------|-------|----------|-------|----------|------|
| Intersection Delay, s/veh  | 8        |       |          |       |          |      |
| Intersection LOS           | Α        |       |          |       |          |      |
|                            |          |       |          |       |          |      |
| Movement                   | WBL      | WBR   | NET      | NER   | SWL      | SWT  |
| Lane Configurations        | M        |       | f)       |       |          | 4    |
| Traffic Vol, veh/h         | 46       | 6     | 39       | 71    | 6        | 16   |
| Future Vol, veh/h          | 46       | 6     | 39       | 71    | 6        | 16   |
| Peak Hour Factor           | 0.59     | 0.59  | 0.80     | 0.80  | 0.88     | 0.88 |
| Heavy Vehicles, %          | 46       | 0     | 10       | 27    | 0        | 0    |
| Mymt Flow                  | 78       | 10    | 49       | 89    | 7        | 18   |
| Number of Lanes            | 1        | 0     | 1        | 0     | 0        | 1    |
| Approach                   | WB       |       | NE       |       | SW       |      |
| Opposing Approach          | WD       |       | SW       |       | NE       |      |
| Opposing Lanes             | 0        |       | 3w       |       | 1        |      |
| Conflicting Approach Left  | NE       |       |          |       | WB       |      |
| Conflicting Lanes Left     | 1        |       | 0        |       | 1        |      |
| Conflicting Approach Right | SW       |       | WB       |       | I        |      |
| Conflicting Lanes Right    | 3vv<br>1 |       | W D      |       | 0        |      |
| HCM Control Delay          | 8.9      |       | 7.6      |       | 7.5      |      |
| HCM LOS                    | 0.9<br>A |       | 7.0<br>A |       | 7.5<br>A |      |
| HOW LOS                    | A        |       | A        |       | A        |      |
|                            |          |       |          |       |          |      |
| Lane                       |          | NELn1 | WBLn1    |       |          |      |
| Vol Left, %                |          | 0%    | 88%      | 27%   |          |      |
| Vol Thru, %                |          | 35%   | 0%       | 73%   |          |      |
| Vol Right, %               |          | 65%   | 12%      | 0%    |          |      |
| Sign Control               |          | Stop  | Stop     | Stop  |          |      |
| Traffic Vol by Lane        |          | 110   | 52       | 22    |          |      |
| LT Vol                     |          | 0     | 46       | 6     |          |      |
| Through Vol                |          | 39    | 0        | 16    |          |      |
| RT Vol                     |          | 71    | 6        | 0     |          |      |
| Lane Flow Rate             |          | 138   | 88       | 25    |          |      |
| Geometry Grp               |          | 1     | 1        | 1     |          |      |
| Degree of Util (X)         |          | 0.147 | 0.124    | 0.03  |          |      |
| Departure Headway (Hd)     |          | 3.855 | 5.071    | 4.329 |          |      |
| Convergence, Y/N           |          | Yes   | Yes      | Yes   |          |      |

Cap

Service Time

HCM Lane V/C Ratio

**HCM Control Delay** 

**HCM Lane LOS** 

HCM 95th-tile Q

702

3.135

0.125

8.9

Α

0.4

832

2.329

0.03

7.5

Α

0.1

913

1.953

0.151

7.6

Α

0.5

|                                   | ٠     | •     | 4    | 1    | ļ     | 1     |
|-----------------------------------|-------|-------|------|------|-------|-------|
| Lane Group                        | EBL   | EBR   | NBL  | NBT  | SBT   | SBR   |
| Lane Configurations               | Y     |       |      | 4    | f)    |       |
| Traffic Volume (vph)              | 8     | 0     | 0    | 130  | 179   | 4     |
| Future Volume (vph)               | 8     | 0     | 0    | 130  | 179   | 4     |
| Ideal Flow (vphpl)                | 1900  | 1900  | 1900 | 1900 | 1900  | 1900  |
| Grade (%)                         | 9%    |       |      | 6%   | -12%  |       |
| Lane Util. Factor                 | 1.00  | 1.00  | 1.00 | 1.00 | 1.00  | 1.00  |
| Frt                               |       |       |      |      | 0.997 |       |
| Flt Protected                     | 0.950 |       |      |      |       |       |
| Satd. Flow (prot)                 | 1724  | 0     | 0    | 1722 | 1931  | 0     |
| Flt Permitted                     | 0.950 |       |      |      |       |       |
| Satd. Flow (perm)                 | 1724  | 0     | 0    | 1722 | 1931  | 0     |
| Link Speed (mph)                  | 30    |       |      | 30   | 30    |       |
| Link Distance (ft)                | 572   |       |      | 413  | 453   |       |
| Travel Time (s)                   | 13.0  |       |      | 9.4  | 10.3  |       |
| Peak Hour Factor                  | 0.67  | 0.67  | 0.68 | 0.68 | 0.77  | 0.77  |
| Heavy Vehicles (%)                | 0%    | 0%    | 0%   | 7%   | 3%    | 50%   |
| Adj. Flow (vph)                   | 12    | 0     | 0    | 191  | 232   | 5     |
| Shared Lane Traffic (%)           |       |       |      |      |       |       |
| Lane Group Flow (vph)             | 12    | 0     | 0    | 191  | 237   | 0     |
| <b>Enter Blocked Intersection</b> | No    | No    | No   | No   | No    | No    |
| Lane Alignment                    | Left  | Right | Left | Left | Left  | Right |
| Median Width(ft)                  | 12    |       |      | 0    | 0     |       |
| Link Offset(ft)                   | 0     |       |      | 0    | 0     |       |
| Crosswalk Width(ft)               | 16    |       |      | 16   | 16    |       |
| Two way Left Turn Lane            |       |       |      |      |       |       |
| Headway Factor                    | 1.06  | 1.06  | 1.04 | 1.04 | 0.93  | 0.93  |
| Turning Speed (mph)               | 15    | 9     | 15   |      |       | 9     |
| Sign Control                      | Stop  |       |      | Stop | Stop  |       |
| Intersection Summary              |       |       |      |      |       |       |
| Area Type:                        | Other |       |      |      |       |       |

| Intersection               |      |       |       |       |      |      |
|----------------------------|------|-------|-------|-------|------|------|
| Intersection Delay, s/veh  | 8.6  |       |       |       |      |      |
| Intersection LOS           | Α.   |       |       |       |      |      |
| Intersection EOO           |      |       |       |       |      |      |
|                            |      |       |       |       |      | 0==  |
| Movement                   | EBL  | EBR   | NBL   | NBT   | SBT  | SBR  |
| Lane Configurations        | Y    |       |       | ર્ન   | Þ    |      |
| Traffic Vol, veh/h         | 8    | 0     | 0     | 130   | 179  | 4    |
| Future Vol, veh/h          | 8    | 0     | 0     | 130   | 179  | 4    |
| Peak Hour Factor           | 0.67 | 0.67  | 0.68  | 0.68  | 0.77 | 0.77 |
| Heavy Vehicles, %          | 0    | 0     | 0     | 7     | 3    | 50   |
| Mvmt Flow                  | 12   | 0     | 0     | 191   | 232  | 5    |
| Number of Lanes            | 1    | 0     | 0     | 1     | 1    | 0    |
| Approach                   | EB   |       |       | NB    | SB   |      |
| Opposing Approach          |      |       |       | SB    | NB   |      |
| Opposing Lanes             | 0    |       |       | 1     | 1    |      |
| Conflicting Approach Left  | SB   |       |       | EB    | •    |      |
| Conflicting Lanes Left     | 1    |       |       | 1     | 0    |      |
| Conflicting Approach Right | NB   |       |       |       | EB   |      |
| Conflicting Lanes Right    | 1    |       |       | 0     | 1    |      |
| HCM Control Delay          | 8.1  |       |       | 8.5   | 8.7  |      |
| HCM LOS                    | Α    |       |       | Α     | Α    |      |
| HOW LOG                    |      |       |       |       |      |      |
|                            |      |       |       |       |      |      |
| Lane                       |      | NBLn1 | EBLn1 | SBLn1 |      |      |
| Vol Left, %                |      | 0%    | 100%  | 0%    |      |      |
| Vol Thru, %                |      | 100%  | 0%    | 98%   |      |      |
| Vol Right, %               |      | 0%    | 0%    | 2%    |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |      | 130   | 8     | 183   |      |      |
| LT Vol                     |      | 0     | 8     | 0     |      |      |
| Through Vol                |      | 130   | 0     | 179   |      |      |
| RT Vol                     |      | 0     | 0     | 4     |      |      |
| Lane Flow Rate             |      | 191   | 12    | 238   |      |      |
| Geometry Grp               |      | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |      | 0.224 | 0.017 | 0.271 |      |      |
| Departure Headway (Hd)     |      | 4.218 | 5.027 | 4.102 |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes   |      |      |
| Cap                        |      | 843   | 716   | 870   |      |      |
| Service Time               |      | 2.28  | 3.027 | 2.16  |      |      |
| HCM Lane V/C Ratio         |      | 0.227 | 0.017 | 0.274 |      |      |
| HCM Control Delay          |      | 8.5   | 8.1   | 8.7   |      |      |
| LICM Lang LOS              |      | ٥.٥   | Ο. 1  | ٥.7   |      |      |

**HCM Lane LOS** 

HCM 95th-tile Q

Α

0.1

0.9

Α

1.1

|                            | •     | •     | 1     | 1     | /    | ļ     |
|----------------------------|-------|-------|-------|-------|------|-------|
| Lane Group                 | WBL   | WBR   | NBT   | NBR   | SBL  | SBT   |
| Lane Configurations        | Y     |       | 13    |       |      | र्स   |
| Traffic Volume (vph)       | 11    | 60    | 50    | 3     | 20   | 42    |
| Future Volume (vph)        | 11    | 60    | 50    | 3     | 20   | 42    |
| Ideal Flow (vphpl)         | 1900  | 1900  | 1900  | 1900  | 1900 | 1900  |
| Grade (%)                  | 0%    |       | -1%   |       |      | -2%   |
| Lane Util. Factor          | 1.00  | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  |
| Frt                        | 0.886 |       | 0.993 |       |      |       |
| Flt Protected              | 0.992 |       |       |       |      | 0.984 |
| Satd. Flow (prot)          | 1637  | 0     | 1859  | 0     | 0    | 1851  |
| Flt Permitted              | 0.992 |       |       |       |      | 0.984 |
| Satd. Flow (perm)          | 1637  | 0     | 1859  | 0     | 0    | 1851  |
| Link Speed (mph)           | 30    |       | 30    |       |      | 30    |
| Link Distance (ft)         | 271   |       | 250   |       |      | 586   |
| Travel Time (s)            | 6.2   |       | 5.7   |       |      | 13.3  |
| Peak Hour Factor           | 0.92  | 0.92  | 0.92  | 0.92  | 0.92 | 0.92  |
| Adj. Flow (vph)            | 12    | 65    | 54    | 3     | 22   | 46    |
| Shared Lane Traffic (%)    |       |       |       |       |      |       |
| Lane Group Flow (vph)      | 77    | 0     | 57    | 0     | 0    | 68    |
| Enter Blocked Intersection | No    | No    | No    | No    | No   | No    |
| Lane Alignment             | Left  | Right | Left  | Right | Left | Left  |
| Median Width(ft)           | 12    |       | 0     |       |      | 0     |
| Link Offset(ft)            | 0     |       | 0     |       |      | 0     |
| Crosswalk Width(ft)        | 16    |       | 16    |       |      | 16    |
| Two way Left Turn Lane     |       |       |       |       |      |       |
| Headway Factor             | 1.00  | 1.00  | 0.99  | 0.99  | 0.99 | 0.99  |
| Turning Speed (mph)        | 15    | 9     |       | 9     | 15   |       |
| Sign Control               | Stop  |       | Stop  |       |      | Stop  |
| Intersection Summary       |       |       |       |       |      |       |
|                            | )ther |       |       |       |      |       |

Area Type: Other Control Type: Unsignalized

| Intersection               |          |        |          |        |          |      |
|----------------------------|----------|--------|----------|--------|----------|------|
| Intersection Delay, s/veh  | 7.4      |        |          |        |          |      |
| Intersection LOS           | A        |        |          |        |          |      |
| Intersection 200           | , ,      |        |          |        |          |      |
|                            | MDI      | 14/00  | NDT      | NDD    | 0.01     | ODT  |
| Movement                   | WBL      | WBR    | NBT      | NBR    | SBL      | SBT  |
| Lane Configurations        | Y        |        | Þ        | _      |          | ન    |
| Traffic Vol, veh/h         | 11       | 60     | 50       | 3      | 20       | 42   |
| Future Vol, veh/h          | 11       | 60     | 50       | 3      | 20       | 42   |
| Peak Hour Factor           | 0.92     | 0.92   | 0.92     | 0.92   | 0.92     | 0.92 |
| Heavy Vehicles, %          | 2        | 2      | 2        | 2      | 2        | 2    |
| Mvmt Flow                  | 12       | 65     | 54       | 3      | 22       | 46   |
| Number of Lanes            | 1        | 0      | 1        | 0      | 0        | 1    |
| Approach                   | WB       |        | NB       |        | SB       |      |
| Opposing Approach          |          |        | SB       |        | NB       |      |
| Opposing Lanes             | 0        |        | 1        |        | 1        |      |
| Conflicting Approach Left  | NB       |        |          |        | WB       |      |
| Conflicting Lanes Left     | 1        |        | 0        |        | 1        |      |
| Conflicting Approach Right | SB       |        | WB       |        |          |      |
| Conflicting Lanes Right    | 1        |        | 1        |        | 0        |      |
| HCM Control Delay          | 7.1      |        | 7.4      |        | 7.6      |      |
| HCM LOS                    | 7.1<br>A |        | 7.4<br>A |        | 7.0<br>A |      |
| HOW LOS                    | А        |        | Н        |        | A        |      |
| Lono                       |          | MDI n1 | M/DI1    | CDI -1 |          |      |
| Lane                       |          |        | WBLn1    | SBLn1  |          |      |
| Vol Left, %                |          | 0%     | 15%      | 32%    |          |      |
| Vol Thru, %                |          | 94%    | 0%       | 68%    |          |      |
| Vol Right, %               |          | 6%     | 85%      | 0%     |          |      |
| Sign Control               |          | Stop   | Stop     | Stop   |          |      |
| Traffic Vol by Lane        |          | 53     | 71       | 62     |          |      |
| LT Vol                     |          | 0      | 11       | 20     |          |      |
| Through Vol                |          | 50     | 0        | 42     |          |      |
| RT Vol                     |          | 3      | 60       | 0      |          |      |
| Lane Flow Rate             |          | 58     | 77       | 67     |          |      |
| Geometry Grp               |          | 1      | 1        | 1      |          |      |
| Degree of Util (X)         |          | 0.065  | 0.079    | 0.078  |          |      |
| Departure Headway (Hd)     |          | 4.088  | 3.672    | 4.179  |          |      |
| Convergence, Y/N           |          | Yes    | Yes      | Yes    |          |      |
| Cap                        |          | 874    | 965      | 856    |          |      |
| Service Time               |          | 2.123  | 1.733    | 2.211  |          |      |
| HCM Lane V/C Ratio         |          | 0.066  | 0.08     | 0.078  |          |      |
| HCM Control Delay          |          | 7.4    | 7.1      | 7.6    |          |      |
| TION Control Dolay         |          |        |          |        |          |      |

HCM 95th-tile Q

0.2

0.3

0.3

|                            | ٠     | •      | 1     | 1     | Ţ     | 1      |
|----------------------------|-------|--------|-------|-------|-------|--------|
| Lane Group                 | EBL   | EBR    | NBL   | NBT   | SBT   | SBR    |
| Lane Configurations        | M     |        |       | 4     | 1     |        |
| Traffic Volume (vph)       | 24    | 28     | 27    | 498   | 395   | 31     |
| Future Volume (vph)        | 24    | 28     | 27    | 498   | 395   | 31     |
| Ideal Flow (vphpl)         | 1900  | 1900   | 1900  | 1900  | 1900  | 1900   |
| Grade (%)                  | 2%    |        |       | 3%    | -1%   |        |
| Lane Util. Factor          | 1.00  | 1.00   | 1.00  | 1.00  | 1.00  | 1.00   |
| Frt                        | 0.928 |        |       |       | 0.990 |        |
| Flt Protected              | 0.977 |        |       | 0.997 |       |        |
| Satd. Flow (prot)          | 1338  | 0      | 0     | 1724  | 1783  | 0      |
| Flt Permitted              | 0.977 |        |       | 0.967 |       |        |
| Satd. Flow (perm)          | 1338  | 0      | 0     | 1672  | 1783  | 0      |
| Right Turn on Red          |       | Yes    |       |       |       | Yes    |
| Satd. Flow (RTOR)          | 45    |        |       |       | 7     |        |
| Link Speed (mph)           | 30    |        |       | 30    | 30    |        |
| Link Distance (ft)         | 904   |        |       | 139   | 1043  |        |
| Travel Time (s)            | 20.5  |        |       | 3.2   | 23.7  |        |
| Peak Hour Factor           | 0.62  | 0.62   | 0.95  | 0.95  | 0.83  | 0.83   |
| Heavy Vehicles (%)         | 20%   | 34%    | 50%   | 6%    | 6%    | 6%     |
| Adj. Flow (vph)            | 39    | 45     | 28    | 524   | 476   | 37     |
| Shared Lane Traffic (%)    | 0,    | 10     | 20    | 021   | 170   | 0.     |
| Lane Group Flow (vph)      | 84    | 0      | 0     | 552   | 513   | 0      |
| Enter Blocked Intersection | No    | No     | No    | No    | No    | No     |
| Lane Alignment             | Left  | Right  | Left  | Left  | Left  | Right  |
| Median Width(ft)           | 12    | . agin | Loit  | 0     | 0     | . agin |
| Link Offset(ft)            | 0     |        |       | 0     | 0     |        |
| Crosswalk Width(ft)        | 16    |        |       | 16    | 16    |        |
| Two way Left Turn Lane     | 10    |        |       | 10    | 10    |        |
| Headway Factor             | 1.01  | 1.01   | 1.02  | 1.02  | 0.99  | 0.99   |
| Turning Speed (mph)        | 1.01  | 9      | 1.02  | 1.02  | 0.77  | 9      |
| Number of Detectors        | 1     | 7      | 13    | 1     | 1     | 7      |
| Detector Template          |       |        | Left  |       | ı     |        |
| Leading Detector (ft)      | 40    |        | 20    | 6     | 6     |        |
| Trailing Detector (ft)     | 40    |        | 0     | 0     | 0     |        |
| Detector 1 Position(ft)    | 0     |        | 0     | 0     | 0     |        |
| Detector 1 Size(ft)        | 40    |        | 20    | 6     | 6     |        |
| . ,                        |       |        |       |       | CI+Ex |        |
| Detector 1 Type            | CI+Ex |        | CI+Ex | CI+EX | CI+EX |        |
| Detector 1 Channel         | 0.0   |        | 0.0   | 0.0   | 0.0   |        |
| Detector 1 Extend (s)      | 0.0   |        | 0.0   | 0.0   | 0.0   |        |
| Detector 1 Queue (s)       | 0.0   |        | 0.0   | 0.0   | 0.0   |        |
| Detector 1 Delay (s)       | 0.0   |        | 0.0   | 0.0   | 0.0   |        |
| Turn Type                  | Prot  |        | Perm  | NA    | NA    |        |
| Protected Phases           | 4     |        |       | 2     | 6     |        |
| Permitted Phases           |       |        | 2     |       |       |        |
| Detector Phase             | 4     |        | 2     | 2     | 6     |        |
| Switch Phase               |       |        |       |       |       |        |
| Minimum Initial (s)        | 6.0   |        | 10.0  | 10.0  | 10.0  |        |
| Minimum Split (s)          | 11.0  |        | 15.0  | 15.0  | 15.0  |        |
| Total Split (s)            | 35.0  |        | 45.0  | 45.0  | 45.0  |        |
| Total Split (%)            | 43.8% |        | 56.3% | 56.3% | 56.3% |        |
| Maximum Green (s)          | 30.0  |        | 40.0  | 40.0  | 40.0  |        |
| Yellow Time (s)            | 4.0   |        | 4.0   | 4.0   | 4.0   |        |
| All-Red Time (s)           | 1.0   |        | 1.0   | 1.0   | 1.0   |        |
| Lost Time Adjust (s)       | 0.0   |        |       | 0.0   | 0.0   |        |
|                            |       |        |       |       |       |        |

Synchro 11 Report Page 1

Job# 16003191A - R.H.

|                         | ۶    | •   | 1   | 1    | ļ    | 1   |
|-------------------------|------|-----|-----|------|------|-----|
| Lane Group              | EBL  | EBR | NBL | NBT  | SBT  | SBR |
| Total Lost Time (s)     | 5.0  |     |     | 5.0  | 5.0  |     |
| Lead/Lag                |      |     |     |      |      |     |
| Lead-Lag Optimize?      |      |     |     |      |      |     |
| Vehicle Extension (s)   | 2.0  |     | 2.0 | 2.0  | 2.0  |     |
| Recall Mode             | None |     | Max | Max  | Max  |     |
| v/c Ratio               | 0.42 |     |     | 0.43 | 0.38 |     |
| Control Delay           | 19.7 |     |     | 5.0  | 4.4  |     |
| Queue Delay             | 0.0  |     |     | 0.0  | 0.0  |     |
| Total Delay             | 19.7 |     |     | 5.0  | 4.4  |     |
| Queue Length 50th (ft)  | 12   |     |     | 58   | 50   |     |
| Queue Length 95th (ft)  | 26   |     |     | 135  | 100  |     |
| Internal Link Dist (ft) | 824  |     |     | 59   | 963  |     |
| Turn Bay Length (ft)    |      |     |     |      |      |     |
| Base Capacity (vph)     | 711  |     |     | 1271 | 1357 |     |
| Starvation Cap Reductn  | 0    |     |     | 0    | 0    |     |
| Spillback Cap Reductn   | 0    |     |     | 0    | 0    |     |
| Storage Cap Reductn     | 0    |     |     | 0    | 0    |     |
| Reduced v/c Ratio       | 0.12 |     |     | 0.43 | 0.38 |     |
| Intersection Summary    |      |     |     |      |      |     |

## **Intersection Summary**

Area Type: Other


Cycle Length: 80

Actuated Cycle Length: 58.2

Natural Cycle: 40

Control Type: Semi Act-Uncoord

Splits and Phases: 2: NYS Route 9D & Clinton Street



|                              | ᄼ    | •    | 4    | 1    | Ţ    | 4    |
|------------------------------|------|------|------|------|------|------|
| Movement                     | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations          | Y    |      |      | र्स  | 1    |      |
| Traffic Volume (veh/h)       | 24   | 28   | 27   | 498  | 395  | 31   |
| Future Volume (veh/h)        | 24   | 28   | 27   | 498  | 395  | 31   |
| Initial Q (Qb), veh          | 0    | 0    | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 | 1.00 | 1.00 |      |      | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach        | No   |      |      | No   | No   | 1100 |
| Adj Sat Flow, veh/h/ln       | 1580 | 1373 | 1106 | 1758 | 1849 | 1849 |
| Adj Flow Rate, veh/h         | 39   | 45   | 28   | 524  | 476  | 37   |
| Peak Hour Factor             | 0.62 | 0.62 | 0.95 | 0.95 | 0.83 | 0.83 |
| Percent Heavy Veh, %         | 20   | 34   | 50   | 6    | 6    | 6    |
| Cap, veh/h                   | 52   | 60   | 97   | 1236 | 1247 | 97   |
| Arrive On Green              | 0.08 | 0.08 | 0.74 | 0.74 | 0.74 | 0.74 |
| Sat Flow, veh/h              | 648  | 748  | 37   | 1679 | 1694 | 132  |
|                              |      |      |      |      |      |      |
| Grp Volume(v), veh/h         | 85   | 0    | 552  | 0    | 0    | 513  |
| Grp Sat Flow(s), veh/h/ln    | 1413 | 0    | 1717 | 0    | 0    | 1826 |
| Q Serve(g_s), s              | 3.2  | 0.0  | 0.0  | 0.0  | 0.0  | 5.6  |
| Cycle Q Clear(g_c), s        | 3.2  | 0.0  | 6.6  | 0.0  | 0.0  | 5.6  |
| Prop In Lane                 | 0.46 | 0.53 | 0.05 | •    | ^    | 0.07 |
| Lane Grp Cap(c), veh/h       | 113  | 0    | 1333 | 0    | 0    | 1344 |
| V/C Ratio(X)                 | 0.75 | 0.00 | 0.41 | 0.00 | 0.00 | 0.38 |
| Avail Cap(c_a), veh/h        | 780  | 0    | 1333 | 0    | 0    | 1344 |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh     | 24.5 | 0.0  | 2.8  | 0.0  | 0.0  | 2.6  |
| Incr Delay (d2), s/veh       | 3.8  | 0.0  | 1.0  | 0.0  | 0.0  | 0.8  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 1.1  | 0.0  | 1.2  | 0.0  | 0.0  | 1.1  |
| Unsig. Movement Delay, s/ve  | eh   |      |      |      |      |      |
| LnGrp Delay(d),s/veh         | 28.3 | 0.0  | 3.7  | 0.0  | 0.0  | 3.5  |
| LnGrp LOS                    | С    | Α    | Α    | Α    | Α    | Α    |
| Approach Vol, veh/h          | 85   |      |      | 552  | 513  |      |
| Approach Delay, s/veh        | 28.3 |      |      | 3.7  | 3.5  |      |
| Approach LOS                 | С    |      |      | Α    | Α    |      |
| Timer - Assigned Phs         |      | 2    |      | 4    |      | 6    |
| Phs Duration (G+Y+Rc), s     |      | 45.0 |      | 9.3  |      | 45.0 |
| ,                            |      |      |      |      |      |      |
| Change Period (Y+Rc), s      |      | 5.0  |      | 5.0  |      | 5.0  |
| Max Green Setting (Gmax), s  |      | 40.0 |      | 30.0 |      | 40.0 |
| Max Q Clear Time (g_c+l1), s | S    | 8.6  |      | 5.2  |      | 7.6  |
| Green Ext Time (p_c), s      |      | 0.7  |      | 0.1  |      | 0.6  |
| Intersection Summary         |      |      |      |      |      |      |
| HCM 6th Ctrl Delay           |      |      | 5.4  |      |      |      |
| HCM 6th LOS                  |      |      | Α    |      |      |      |
| Notes                        |      |      |      |      |      |      |

User approved volume balancing among the lanes for turning movement.

|                                 | ٠     | •      | 1     | Ť     | ļ     | 1      |
|---------------------------------|-------|--------|-------|-------|-------|--------|
| Lane Group                      | EBL   | EBR    | NBL   | NBT   | SBT   | SBR    |
| Lane Configurations             | Y     |        |       | 4     | 1     |        |
| Traffic Volume (vph)            | 31    | 52     | 35    | 498   | 395   | 33     |
| Future Volume (vph)             | 31    | 52     | 35    | 498   | 395   | 33     |
| Ideal Flow (vphpl)              | 1900  | 1900   | 1900  | 1900  | 1900  | 1900   |
| Grade (%)                       | 2%    | 1700   | 1700  | 3%    | -1%   | 1700   |
| Lane Util. Factor               | 1.00  | 1.00   | 1.00  | 1.00  | 1.00  | 1.00   |
| Frt                             | 0.915 | 1.00   | 1.00  | 1.00  | 0.990 | 1.00   |
| Flt Protected                   | 0.913 |        |       | 0.997 | 0.770 |        |
|                                 | 1312  | 0      | 0     | 1713  | 1783  | 0      |
| Satd. Flow (prot) Flt Permitted | 0.982 | U      | U     | 0.953 | 1703  | U      |
|                                 |       | 0      | ^     |       | 1700  | 0      |
| Satd. Flow (perm)               | 1312  | 0      | 0     | 1638  | 1783  | 0      |
| Right Turn on Red               | 0.4   | Yes    |       |       | _     | Yes    |
| Satd. Flow (RTOR)               | 84    |        |       |       | 8     |        |
| Link Speed (mph)                | 30    |        |       | 30    | 30    |        |
| Link Distance (ft)              | 904   |        |       | 139   | 1043  |        |
| Travel Time (s)                 | 20.5  |        |       | 3.2   | 23.7  |        |
| Peak Hour Factor                | 0.62  | 0.62   | 0.95  | 0.95  | 0.83  | 0.83   |
| Heavy Vehicles (%)              | 20%   | 34%    | 50%   | 6%    | 6%    | 6%     |
| Adj. Flow (vph)                 | 50    | 84     | 37    | 524   | 476   | 40     |
| Shared Lane Traffic (%)         |       |        |       |       |       |        |
| Lane Group Flow (vph)           | 134   | 0      | 0     | 561   | 516   | 0      |
| Enter Blocked Intersection      | No    | No     | No    | No    | No    | No     |
| Lane Alignment                  | Left  | Right  | Left  | Left  | Left  | Right  |
| Median Width(ft)                | 12    | . agin | Loit  | 0     | 0     | . agin |
| Link Offset(ft)                 | 0     |        |       | 0     | 0     |        |
| Crosswalk Width(ft)             | 16    |        |       | 16    | 16    |        |
| Two way Left Turn Lane          | 10    |        |       | 10    | 10    |        |
|                                 | 1.01  | 1.01   | 1.02  | 1.02  | 0.99  | 0.99   |
| Headway Factor                  |       |        |       | 1.02  | 0.99  |        |
| Turning Speed (mph)             | 15    | 9      | 15    | 1     | 1     | 9      |
| Number of Detectors             | 1     |        | 1     | 1     | 1     |        |
| Detector Template               |       |        | Left  |       |       |        |
| Leading Detector (ft)           | 40    |        | 20    | 6     | 6     |        |
| Trailing Detector (ft)          | 0     |        | 0     | 0     | 0     |        |
| Detector 1 Position(ft)         | 0     |        | 0     | 0     | 0     |        |
| Detector 1 Size(ft)             | 40    |        | 20    | 6     | 6     |        |
| Detector 1 Type                 | CI+Ex |        | CI+Ex | CI+Ex | CI+Ex |        |
| Detector 1 Channel              |       |        |       |       |       |        |
| Detector 1 Extend (s)           | 0.0   |        | 0.0   | 0.0   | 0.0   |        |
| Detector 1 Queue (s)            | 0.0   |        | 0.0   | 0.0   | 0.0   |        |
| Detector 1 Delay (s)            | 0.0   |        | 0.0   | 0.0   | 0.0   |        |
| Turn Type                       | Prot  |        | Perm  | NA    | NA    |        |
| Protected Phases                | 4     |        | . 3   | 2     | 6     |        |
| Permitted Phases                |       |        | 2     |       |       |        |
| Detector Phase                  | 4     |        | 2     | 2     | 6     |        |
| Switch Phase                    | 4     |        |       | 2     | U     |        |
|                                 | 6.0   |        | 10.0  | 10.0  | 10.0  |        |
| Minimum Initial (s)             | 6.0   |        | 10.0  | 10.0  | 10.0  |        |
| Minimum Split (s)               | 11.0  |        | 15.0  | 15.0  | 15.0  |        |
| Total Split (s)                 | 35.0  |        | 45.0  | 45.0  | 45.0  |        |
| Total Split (%)                 | 43.8% |        | 56.3% | 56.3% | 56.3% |        |
| Maximum Green (s)               | 30.0  |        | 40.0  | 40.0  | 40.0  |        |
| Yellow Time (s)                 | 4.0   |        | 4.0   | 4.0   | 4.0   |        |
| All-Red Time (s)                | 1.0   |        | 1.0   | 1.0   | 1.0   |        |
| Lost Time Adjust (s)            | 0.0   |        |       | 0.0   | 0.0   |        |
| ,                               |       |        |       |       |       |        |

Synchro 11 Report Page 1

|                         | •    | *   | 1   | Ť    | <b>↓</b> | 4   |
|-------------------------|------|-----|-----|------|----------|-----|
| Lane Group              | EBL  | EBR | NBL | NBT  | SBT      | SBR |
| Total Lost Time (s)     | 5.0  |     |     | 5.0  | 5.0      |     |
| Lead/Lag                |      |     |     |      |          |     |
| Lead-Lag Optimize?      |      |     |     |      |          |     |
| Vehicle Extension (s)   | 2.0  |     | 2.0 | 2.0  | 2.0      |     |
| Recall Mode             | None |     | Max | Max  | Max      |     |
| v/c Ratio               | 0.54 |     |     | 0.46 | 0.39     |     |
| Control Delay           | 19.2 |     |     | 5.8  | 4.9      |     |
| Queue Delay             | 0.0  |     |     | 0.0  | 0.0      |     |
| Total Delay             | 19.2 |     |     | 5.8  | 4.9      |     |
| Queue Length 50th (ft)  | 16   |     |     | 63   | 53       |     |
| Queue Length 95th (ft)  | 29   |     |     | 161  | 115      |     |
| Internal Link Dist (ft) | 824  |     |     | 59   | 963      |     |
| Turn Bay Length (ft)    |      |     |     |      |          |     |
| Base Capacity (vph)     | 713  |     |     | 1228 | 1338     |     |
| Starvation Cap Reductn  | 0    |     |     | 0    | 0        |     |
| Spillback Cap Reductn   | 0    |     |     | 0    | 0        |     |
| Storage Cap Reductn     | 0    |     |     | 0    | 0        |     |
| Reduced v/c Ratio       | 0.19 |     |     | 0.46 | 0.39     |     |
| Intersection Summary    |      |     |     |      |          |     |

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 58.6

Natural Cycle: 40

Control Type: Semi Act-Uncoord

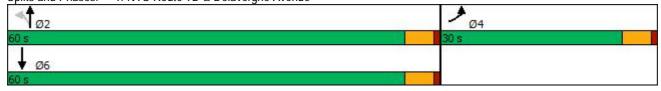
Splits and Phases: 2: NYS Route 9D & Clinton Street



|                             | ۶    | •    | 4    | 1    | ļ    | 1    |
|-----------------------------|------|------|------|------|------|------|
| Movement                    | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations         | M    |      |      | र्स  | f.   |      |
| Traffic Volume (veh/h)      | 31   | 52   | 35   | 498  | 395  | 33   |
| Future Volume (veh/h)       | 31   | 52   | 35   | 498  | 395  | 33   |
| Initial Q (Qb), veh         | 0    | 0    | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)         | 1.00 | 1.00 | 1.00 |      |      | 1.00 |
| Parking Bus, Adj            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach       | No   | 1100 |      | No   | No   |      |
| Adj Sat Flow, veh/h/ln      | 1580 | 1373 | 1106 | 1758 | 1849 | 1849 |
| Adj Flow Rate, veh/h        | 50   | 84   | 37   | 524  | 476  | 40   |
| Peak Hour Factor            | 0.62 | 0.62 | 0.95 | 0.95 | 0.83 | 0.83 |
| Percent Heavy Veh, %        | 20   | 34   | 50   | 6    | 6    | 6    |
| Cap, veh/h                  | 61   | 103  | 106  | 1158 | 1187 | 100  |
| Arrive On Green             | 0.12 | 0.12 | 0.71 | 0.71 | 0.71 | 0.71 |
| Sat Flow, veh/h             | 518  | 870  | 55   | 1642 | 1682 | 141  |
|                             |      |      |      |      |      |      |
| Grp Volume(v), veh/h        | 135  | 0    | 561  | 0    | 0    | 516  |
| Grp Sat Flow(s), veh/h/ln   | 1398 | 0    | 1697 | 0    | 0    | 1824 |
| Q Serve(g_s), s             | 5.3  | 0.0  | 0.0  | 0.0  | 0.0  | 6.6  |
| Cycle Q Clear(g_c), s       | 5.3  | 0.0  | 7.8  | 0.0  | 0.0  | 6.6  |
| Prop In Lane                | 0.37 | 0.62 | 0.07 | _    | _    | 0.08 |
| Lane Grp Cap(c), veh/h      | 165  | 0    | 1265 | 0    | 0    | 1287 |
| V/C Ratio(X)                | 0.82 | 0.00 | 0.44 | 0.00 | 0.00 | 0.40 |
| Avail Cap(c_a), veh/h       | 739  | 0    | 1265 | 0    | 0    | 1287 |
| HCM Platoon Ratio           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)          | 1.00 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh    | 24.4 | 0.0  | 3.6  | 0.0  | 0.0  | 3.4  |
| Incr Delay (d2), s/veh      | 3.7  | 0.0  | 1.1  | 0.0  | 0.0  | 0.9  |
| Initial Q Delay(d3),s/veh   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/ln    | 1.8  | 0.0  | 1.8  | 0.0  | 0.0  | 1.6  |
| Unsig. Movement Delay, s/ve | eh   |      |      |      |      |      |
| LnGrp Delay(d),s/veh        | 28.1 | 0.0  | 4.7  | 0.0  | 0.0  | 4.4  |
| LnGrp LOS                   | С    | Α    | Α    | Α    | Α    | Α    |
| Approach Vol, veh/h         | 135  |      |      | 561  | 516  |      |
| Approach Delay, s/veh       | 28.1 |      |      | 4.7  | 4.4  |      |
| Approach LOS                | С    |      |      | Α    | Α    |      |
|                             |      | 2    |      |      |      | ,    |
| Timer - Assigned Phs        |      | 2    |      | 4    |      | 6    |
| Phs Duration (G+Y+Rc), s    |      | 45.0 |      | 11.7 |      | 45.0 |
| Change Period (Y+Rc), s     |      | 5.0  |      | 5.0  |      | 5.0  |
| Max Green Setting (Gmax),   |      | 40.0 |      | 30.0 |      | 40.0 |
| Max Q Clear Time (g_c+l1),  | S    | 9.8  |      | 7.3  |      | 8.6  |
| Green Ext Time (p_c), s     |      | 0.7  |      | 0.3  |      | 0.6  |
| Intersection Summary        |      |      |      |      |      |      |
| HCM 6th Ctrl Delay          |      |      | 7.2  |      |      |      |
| HCM 6th LOS                 |      |      | Α    |      |      |      |
|                             |      |      | ^    |      |      |      |
| Notes                       |      |      |      |      |      |      |

User approved volume balancing among the lanes for turning movement.

|                            | ١     | •            | 1       | †          | Ţ          | 1            |
|----------------------------|-------|--------------|---------|------------|------------|--------------|
| Lane Group                 | EBL   | EBR          | NBL     | NBT        | SBT        | SBR          |
| Lane Configurations        | N/    |              |         | 4          | 1,         |              |
| Traffic Volume (vph)       | 106   | 63           | 71      | 485        | 674        | 66           |
| Future Volume (vph)        | 106   | 63           | 71      | 485        | 674        | 66           |
| Ideal Flow (vphpl)         | 1900  | 1900         | 1900    | 1900       | 1900       | 1900         |
| Lane Width (ft)            | 13    | 12           | 12      | 16         | 12         | 12           |
| Grade (%)                  | 2%    | 12           | 12      | 1%         | 1%         |              |
| Lane Util. Factor          | 1.00  | 1.00         | 1.00    | 1.00       | 1.00       | 1.00         |
| Frt                        | 0.950 | 1.00         | 1.00    | 1.00       | 0.988      | 1.00         |
| Flt Protected              | 0.970 |              |         | 0.994      | 0.700      |              |
| Satd. Flow (prot)          | 1756  | 0            | 0       | 2088       | 1831       | 0            |
| Flt Permitted              | 0.970 | U            | U       | 0.839      | 1001       | Ū            |
| Satd. Flow (perm)          | 1756  | 0            | 0       | 1762       | 1831       | 0            |
| Right Turn on Red          | 1730  | Yes          | U       | 1102       | 1001       | Yes          |
| Satd. Flow (RTOR)          | 33    | 103          |         |            | 10         | 103          |
| Link Speed (mph)           | 30    |              |         | 40         | 40         |              |
| Link Distance (ft)         | 318   |              |         | 1043       | 324        |              |
| Travel Time (s)            | 7.2   |              |         | 17.8       | 5.5        |              |
| Peak Hour Factor           | 0.94  | 0.94         | 0.94    | 0.94       | 0.94       | 0.94         |
|                            |       |              |         | 516        |            | 0.94<br>70   |
| Adj. Flow (vph)            | 113   | 67           | 76      | 010        | 717        | /0           |
| Shared Lane Traffic (%)    | 100   | 0            | 0       | F02        | 707        | ^            |
| Lane Group Flow (vph)      | 180   | 0            | 0       | 592        | 787        | 0            |
| Enter Blocked Intersection | No    | No<br>Dialet | No      | No         | No         | No<br>Dialet |
| Lane Alignment             | Left  | Right        | Left    | Left       | Left       | Right        |
| Median Width(ft)           | 13    |              |         | 0          | 0          |              |
| Link Offset(ft)            | 0     |              |         | 0          | 0          |              |
| Crosswalk Width(ft)        | 16    |              |         | 16         | 16         |              |
| Two way Left Turn Lane     |       |              |         |            |            |              |
| Headway Factor             | 0.97  | 1.01         | 1.01    | 0.85       | 1.01       | 1.01         |
| Turning Speed (mph)        | 15    | 9            | 15      |            |            | 9            |
| Number of Detectors        | 1     |              | 1       | 1          | 1          |              |
| Detector Template          |       |              | Left    |            |            |              |
| Leading Detector (ft)      | 35    |              | 20      | 6          | 6          |              |
| Trailing Detector (ft)     | -5    |              | 0       | 0          | 0          |              |
| Detector 1 Position(ft)    | -5    |              | 0       | 0          | 0          |              |
| Detector 1 Size(ft)        | 40    |              | 20      | 6          | 6          |              |
| Detector 1 Type            | CI+Ex |              | CI+Ex   |            | CI+Ex      |              |
| Detector 1 Channel         |       |              |         |            |            |              |
| Detector 1 Extend (s)      | 0.0   |              | 0.0     | 0.0        | 0.0        |              |
| Detector 1 Queue (s)       | 0.0   |              | 0.0     | 0.0        | 0.0        |              |
| Detector 1 Delay (s)       | 0.0   |              | 0.0     | 0.0        | 0.0        |              |
| Turn Type                  | Prot  |              | Perm    | NA         | NA         |              |
| Protected Phases           | 4     |              | i Cilli | 2          | 6          |              |
| Permitted Phases           | 4     |              | 2       |            | U          |              |
| Detector Phase             | 4     |              | 2       | 2          | 6          |              |
| Switch Phase               | 4     |              | Z       | Z          | 0          |              |
|                            | ГΛ    |              | ГО      | ГΛ         | Γ.0        |              |
| Minimum Initial (s)        | 5.0   |              | 5.0     | 5.0        | 5.0        |              |
| Minimum Split (s)          | 23.0  |              | 23.0    | 23.0       | 23.0       |              |
| Total Split (s)            | 30.0  |              | 60.0    | 60.0       | 60.0       |              |
| Total Split (%)            | 33.3% |              | 66.7%   | 66.7%      | 66.7%      |              |
| Maximum Green (s)          | 25.0  |              | 55.0    | 55.0       | 55.0       |              |
| Yellow Time (s)            | 4.0   |              | 4.0     | 4.0        | 4.0        |              |
| All-Red Time (s)           |       |              |         |            |            |              |
| Lost Time Adjust (s)       | 1.0   |              | 1.0     | 1.0<br>0.0 | 1.0<br>0.0 |              |


Synchro 11 Report Page 1

Job# 16003191A - R.H.

## 1: NYS Route 9D & Delavergne Avenue

|                          | ۶       | *   | 4   | Ť    | Ţ    | 1   |
|--------------------------|---------|-----|-----|------|------|-----|
| Lane Group               | EBL     | EBR | NBL | NBT  | SBT  | SBR |
| Total Lost Time (s)      | 5.0     |     |     | 5.0  | 5.0  |     |
| Lead/Lag                 |         |     |     |      |      |     |
| Lead-Lag Optimize?       |         |     |     |      |      |     |
| Vehicle Extension (s)    | 2.0     |     | 2.0 | 2.0  | 2.0  |     |
| Recall Mode              | None    |     | Max | Max  | Max  |     |
| Walk Time (s)            |         |     |     |      | 7.0  |     |
| Flash Dont Walk (s)      |         |     |     |      | 11.0 |     |
| Pedestrian Calls (#/hr)  |         |     |     |      | 0    |     |
| v/c Ratio                | 0.65    |     |     | 0.46 | 0.59 |     |
| Control Delay            | 35.9    |     |     | 6.3  | 7.9  |     |
| Queue Delay              | 0.0     |     |     | 0.0  | 0.0  |     |
| Total Delay              | 35.9    |     |     | 6.3  | 7.9  |     |
| Queue Length 50th (ft)   | 66      |     |     | 92   | 139  |     |
| Queue Length 95th (ft)   | 127     |     |     | 194  | 297  |     |
| Internal Link Dist (ft)  | 238     |     |     | 963  | 244  |     |
| Turn Bay Length (ft)     |         |     |     |      |      |     |
| Base Capacity (vph)      | 600     |     |     | 1278 | 1330 |     |
| Starvation Cap Reductn   | 0       |     |     | 0    | 0    |     |
| Spillback Cap Reductn    | 0       |     |     | 0    | 0    |     |
| Storage Cap Reductn      | 0       |     |     | 0    | 0    |     |
| Reduced v/c Ratio        | 0.30    |     |     | 0.46 | 0.59 |     |
| Intersection Summary     |         |     |     |      |      |     |
| Area Type:               | Other   |     |     |      |      |     |
| Cycle Length: 90         |         |     |     |      |      |     |
| Actuated Cycle Length: 7 | 76      |     |     |      |      |     |
| Natural Cycle: 60        |         |     |     |      |      |     |
| Control Type: Semi Act-l | Jncoord |     |     |      |      |     |

Splits and Phases: 1: NYS Route 9D & Delavergne Avenue



|                              | ۶    | •    | 4    | 1    | ļ    | 1    |
|------------------------------|------|------|------|------|------|------|
| Movement                     | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations          | Y    |      |      | 4    | 7    |      |
| Traffic Volume (veh/h)       | 106  | 63   | 71   | 485  | 674  | 66   |
| Future Volume (veh/h)        | 106  | 63   | 71   | 485  | 674  | 66   |
| Initial Q (Qb), veh          | 0    | 0    | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 | 1.00 | 1.00 | · ·  | U    | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach        | No   | 1.00 | 1.00 | No   | No   | 1.00 |
| Adj Sat Flow, veh/h/ln       | 1921 | 1847 | 1864 | 1939 | 1864 | 1864 |
|                              | 113  | 67   | 76   | 516  | 717  | 70   |
| Adj Flow Rate, veh/h         |      |      |      |      | 0.94 |      |
| Peak Hour Factor             | 0.94 | 0.94 | 0.94 | 0.94 |      | 0.94 |
| Percent Heavy Veh, %         | 2    | 2    | 2    | 2    | 2    | 2    |
| Cap, veh/h                   | 140  | 83   | 165  | 1094 | 1233 | 120  |
| Arrive On Green              | 0.13 | 0.13 | 0.74 | 0.74 | 0.74 | 0.74 |
| Sat Flow, veh/h              | 1092 | 648  | 149  | 1483 | 1672 | 163  |
| Grp Volume(v), veh/h         | 181  | 0    | 592  | 0    | 0    | 787  |
| Grp Sat Flow(s), veh/h/ln    | 1749 | 0    | 1632 | 0    | 0    | 1835 |
| Q Serve(g_s), s              | 7.5  | 0.0  | 0.8  | 0.0  | 0.0  | 14.7 |
| Cycle Q Clear(g_c), s        | 7.5  | 0.0  | 15.5 | 0.0  | 0.0  | 14.7 |
| Prop In Lane                 | 0.62 | 0.37 | 0.13 |      |      | 0.09 |
| Lane Grp Cap(c), veh/h       | 224  | 0    | 1259 | 0    | 0    | 1354 |
| V/C Ratio(X)                 | 0.81 | 0.00 | 0.47 | 0.00 | 0.00 | 0.58 |
| Avail Cap(c_a), veh/h        | 587  | 0.00 | 1259 | 0.00 | 0.00 | 1354 |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 |
|                              | 31.6 | 0.00 | 3.7  |      | 0.00 | 4.5  |
| Uniform Delay (d), s/veh     |      |      |      | 0.0  |      |      |
| Incr Delay (d2), s/veh       | 2.6  | 0.0  | 1.3  | 0.0  | 0.0  | 1.8  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 3.2  | 0.0  | 2.2  | 0.0  | 0.0  | 3.6  |
| Unsig. Movement Delay, s/ve  |      |      |      |      |      |      |
| LnGrp Delay(d),s/veh         | 34.2 | 0.0  | 5.0  | 0.0  | 0.0  | 6.3  |
| LnGrp LOS                    | С    | Α    | Α    | Α    | Α    | Α    |
| Approach Vol, veh/h          | 181  |      |      | 592  | 787  |      |
| Approach Delay, s/veh        | 34.2 |      |      | 5.0  | 6.3  |      |
| Approach LOS                 | С    |      |      | Α    | Α    |      |
| Timer - Assigned Phs         |      | 2    |      | 4    |      | 6    |
|                              |      |      |      |      |      |      |
| Phs Duration (G+Y+Rc), s     |      | 60.0 |      | 14.6 |      | 60.0 |
| Change Period (Y+Rc), s      |      | 5.0  |      | 5.0  |      | 5.0  |
| Max Green Setting (Gmax), s  |      | 55.0 |      | 25.0 |      | 55.0 |
| Max Q Clear Time (g_c+I1), s | 5    | 17.5 |      | 9.5  |      | 16.7 |
| Green Ext Time (p_c), s      |      | 0.9  |      | 0.3  |      | 0.9  |
| Intersection Summary         |      |      |      |      |      |      |
| HCM 6th Ctrl Delay           |      |      | 9.0  |      |      |      |
| HCM 6th LOS                  |      |      | Α    |      |      |      |
| Notes                        |      |      |      |      |      |      |

User approved volume balancing among the lanes for turning movement.

|                            | ۶     | •     | 4    | 1     | ļ     | 1     |
|----------------------------|-------|-------|------|-------|-------|-------|
| Lane Group                 | EBL   | EBR   | NBL  | NBT   | SBT   | SBR   |
| Lane Configurations        | Y     |       |      | ર્ન   | 13    |       |
| Traffic Volume (vph)       | 21    | 28    | 30   | 535   | 698   | 40    |
| Future Volume (vph)        | 21    | 28    | 30   | 535   | 698   | 40    |
| Ideal Flow (vphpl)         | 1900  | 1900  | 1900 | 1900  | 1900  | 1900  |
| Grade (%)                  | 2%    |       |      | 3%    | -1%   |       |
| Lane Util. Factor          | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00  |
| Frt                        | 0.923 |       |      |       | 0.993 |       |
| Flt Protected              | 0.979 |       |      | 0.997 |       |       |
| Satd. Flow (prot)          | 1666  | 0     | 0    | 1825  | 1842  | 0     |
| Flt Permitted              | 0.979 |       |      | 0.997 |       |       |
| Satd. Flow (perm)          | 1666  | 0     | 0    | 1825  | 1842  | 0     |
| Link Speed (mph)           | 30    |       |      | 30    | 30    |       |
| Link Distance (ft)         | 904   |       |      | 139   | 1043  |       |
| Travel Time (s)            | 20.5  |       |      | 3.2   | 23.7  |       |
| Peak Hour Factor           | 0.87  | 0.87  | 0.97 | 0.97  | 0.89  | 0.89  |
| Heavy Vehicles (%)         | 2%    | 2%    | 6%   | 2%    | 3%    | 2%    |
| Adj. Flow (vph)            | 24    | 32    | 31   | 552   | 784   | 45    |
| Shared Lane Traffic (%)    |       |       |      |       |       |       |
| Lane Group Flow (vph)      | 56    | 0     | 0    | 583   | 829   | 0     |
| Enter Blocked Intersection | No    | No    | No   | No    | No    | No    |
| Lane Alignment             | Left  | Right | Left | Left  | Left  | Right |
| Median Width(ft)           | 12    |       |      | 0     | 0     |       |
| Link Offset(ft)            | 0     |       |      | 0     | 0     |       |
| Crosswalk Width(ft)        | 16    |       |      | 16    | 16    |       |
| Two way Left Turn Lane     |       |       |      |       |       |       |
| Headway Factor             | 1.01  | 1.01  | 1.02 | 1.02  | 0.99  | 0.99  |
| Turning Speed (mph)        | 15    | 9     | 15   |       |       | 9     |
| Sign Control               | Stop  |       |      | Free  | Free  |       |
| Intersection Summary       |       |       |      |       |       |       |
| Area Type: (               | Other |       |      |       |       |       |

| Intersection                             |        |       |        |           |         |      |
|------------------------------------------|--------|-------|--------|-----------|---------|------|
| Int Delay, s/veh                         | 1.4    |       |        |           |         |      |
| Movement                                 | EBL    | EBR   | NBL    | NBT       | SBT     | SBR  |
| Lane Configurations                      | Y      |       |        | ર્ન       | 1       |      |
| Traffic Vol, veh/h                       | 21     | 28    | 30     | 535       | 698     | 40   |
| Future Vol, veh/h                        | 21     | 28    | 30     | 535       | 698     | 40   |
| Conflicting Peds, #/hr                   | 0      | 0     | 0      | 0         | 0       | 0    |
| Sign Control                             | Stop   | Stop  | Free   | Free      | Free    | Free |
| RT Channelized                           | -      | None  |        | None      | -       |      |
| Storage Length                           | 0      | -     | _      | -         | _       | -    |
| Veh in Median Storage                    |        | -     | -      | 0         | 0       | _    |
| Grade, %                                 | 2      | _     | _      | 3         | -1      | -    |
| Peak Hour Factor                         | 87     | 87    | 97     | 97        | 89      | 89   |
|                                          | 2      | 2     | 6      | 2         |         | 2    |
| Heavy Vehicles, %                        |        |       |        |           | 3       |      |
| Mvmt Flow                                | 24     | 32    | 31     | 552       | 784     | 45   |
|                                          |        |       |        |           |         |      |
| Major/Minor N                            | 1inor2 |       | Major1 | ١         | /lajor2 |      |
| Conflicting Flow All                     | 1421   | 807   | 829    | 0         |         | 0    |
| Stage 1                                  | 807    | -     | -      | -         | _       | -    |
| Stage 2                                  | 614    | _     | _      | _         | _       |      |
| Critical Hdwy                            | 6.82   | 6.42  | 4.16   | _         | _       | _    |
| Critical Hdwy Stg 1                      | 5.82   | 0.42  | 4.10   | _         | _       | _    |
| Critical Hdwy Stg 2                      | 5.82   |       |        | _         |         | _    |
|                                          |        | 3.318 |        | -         | -       | -    |
| Pot Cap-1 Maneuver                       | 128    | 365   | 786    | -         | -       | -    |
| ·                                        |        | 303   | 700    | -         |         | -    |
| Stage 1                                  | 401    | -     | -      | -         | -       |      |
| Stage 2                                  | 504    | -     | -      | -         | -       | -    |
| Platoon blocked, %                       | 404    | 0.15  | 701    | -         | -       | -    |
| Mov Cap-1 Maneuver                       | 121    | 365   | 786    | -         | -       | -    |
| Mov Cap-2 Maneuver                       | 121    | -     | -      | -         | -       | -    |
| Stage 1                                  | 378    | -     | -      | -         | -       | -    |
| Stage 2                                  | 504    | -     | -      | -         | -       | -    |
|                                          |        |       |        |           |         |      |
| Approach                                 | EB     |       | NB     |           | SB      |      |
|                                          |        |       |        |           |         |      |
| HCM Control Delay, s                     | _      |       | 0.5    |           | 0       |      |
| HCM LOS                                  | D      |       |        |           |         |      |
|                                          |        |       |        |           |         |      |
| Minor Lane/Major Mvm                     | nt_    | NBL   | NBTE   | EBLn1     | SBT     | SBR  |
| Capacity (veh/h)                         |        | 786   | _      | 196       | -       | _    |
|                                          |        | 0.039 | _      | 0.287     | _       | _    |
| HCM Lane V/C Ratio                       |        |       |        |           |         | _    |
| HCM Lane V/C Ratio HCM Control Delay (s) | )      |       | 0      | 30.6      |         |      |
| HCM Control Delay (s)                    |        | 9.8   | 0<br>Δ | 30.6<br>D | -       | _    |
|                                          |        |       | 0<br>A | 30.6<br>D | -       | -    |

|                            | *     | ٤     | ×              | /     | 6    | ×     |
|----------------------------|-------|-------|----------------|-------|------|-------|
| Lane Group                 | WBL   | WBR   | NET            | NER   | SWL  | SWT   |
| Lane Configurations        | Y     |       | T <sub>3</sub> |       |      | 4     |
| Traffic Volume (vph)       | 61    | 14    | 29             | 48    | 8    | 9     |
| Future Volume (vph)        | 61    | 14    | 29             | 48    | 8    | 9     |
| Ideal Flow (vphpl)         | 1900  | 1900  | 1900           | 1900  | 1900 | 1900  |
| Grade (%)                  | 3%    |       | -4%            |       |      | 0%    |
| Lane Util. Factor          | 1.00  | 1.00  | 1.00           | 1.00  | 1.00 | 1.00  |
| Frt                        | 0.975 |       | 0.916          |       |      |       |
| Flt Protected              | 0.961 |       |                |       |      | 0.977 |
| Satd. Flow (prot)          | 1698  | 0     | 1699           | 0     | 0    | 1856  |
| Flt Permitted              | 0.961 |       |                |       |      | 0.977 |
| Satd. Flow (perm)          | 1698  | 0     | 1699           | 0     | 0    | 1856  |
| Link Speed (mph)           | 30    |       | 30             |       |      | 30    |
| Link Distance (ft)         | 904   |       | 626            |       |      | 620   |
| Travel Time (s)            | 20.5  |       | 14.2           |       |      | 14.1  |
| Peak Hour Factor           | 0.82  | 0.82  | 0.66           | 0.66  | 0.61 | 0.61  |
| Heavy Vehicles (%)         | 4%    | 0%    | 2%             | 6%    | 0%   | 0%    |
| Adj. Flow (vph)            | 74    | 17    | 44             | 73    | 13   | 15    |
| Shared Lane Traffic (%)    |       |       |                |       |      |       |
| Lane Group Flow (vph)      | 91    | 0     | 117            | 0     | 0    | 28    |
| Enter Blocked Intersection | No    | No    | No             | No    | No   | No    |
| Lane Alignment             | Left  | Right | Left           | Right | Left | Left  |
| Median Width(ft)           | 12    |       | 0              |       |      | 0     |
| Link Offset(ft)            | 0     |       | 0              |       |      | 0     |
| Crosswalk Width(ft)        | 16    |       | 16             |       |      | 16    |
| Two way Left Turn Lane     |       |       |                |       |      |       |
| Headway Factor             | 1.02  | 1.02  | 0.97           | 0.97  | 1.00 | 1.00  |
| Turning Speed (mph)        | 15    | 9     |                | 9     | 15   |       |
| Sign Control               | Stop  |       | Stop           |       |      | Stop  |
| Intersection Summary       |       |       |                |       |      |       |
| Area Type: C               | )ther |       |                |       |      |       |

| Intersection               |      |       |       |       |      |      |
|----------------------------|------|-------|-------|-------|------|------|
| Intersection Delay, s/veh  | 7.5  |       |       |       |      |      |
| Intersection LOS           | Α    |       |       |       |      |      |
|                            |      |       |       |       |      |      |
| Movement                   | WBL  | WBR   | NET   | NER   | SWL  | SWT  |
| Lane Configurations        | R.F  |       | 1     |       |      | 4    |
| Traffic Vol, veh/h         | 61   | 14    | 29    | 48    | 8    | 9    |
| Future Vol, veh/h          | 61   | 14    | 29    | 48    | 8    | 9    |
| Peak Hour Factor           | 0.82 | 0.82  | 0.66  | 0.66  | 0.61 | 0.61 |
| Heavy Vehicles, %          | 4    | 0     | 2     | 6     | 0    | 0    |
| Mvmt Flow                  | 74   | 17    | 44    | 73    | 13   | 15   |
| Number of Lanes            | 1    | 0     | 1     | 0     | 0    | 1    |
| Approach                   | WB   |       | NE    |       | SW   |      |
| Opposing Approach          |      |       | SW    |       | NE   |      |
| Opposing Lanes             | 0    |       | 1     |       | 1    |      |
| Conflicting Approach Left  | NE   |       | •     |       | WB   |      |
| Conflicting Lanes Left     | 1    |       | 0     |       | 1    |      |
| Conflicting Approach Right | SW   |       | WB    |       | •    |      |
| Conflicting Lanes Right    | 1    |       | 1     |       | 0    |      |
| HCM Control Delay          | 7.8  |       | 7.3   |       | 7.5  |      |
| HCM LOS                    | Α    |       | Α     |       | Α    |      |
|                            |      |       |       |       |      |      |
| Lane                       |      | NELn1 | WBLn1 | SWLn1 |      |      |
| Vol Left, %                |      | 0%    | 81%   | 47%   |      |      |
| Vol Thru, %                |      | 38%   | 0%    | 53%   |      |      |
| Vol Right, %               |      | 62%   | 19%   | 0%    |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |      | 77    | 75    | 17    |      |      |
| LT Vol                     |      | 0     | 61    | 8     |      |      |
| Through Vol                |      | 29    | 0     | 9     |      |      |
| RT Vol                     |      | 48    | 14    | 0     |      |      |
| Lane Flow Rate             |      | 117   | 91    | 28    |      |      |
| Geometry Grp               |      | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |      | 0.121 | 0.108 | 0.033 |      |      |
| Departure Headway (Hd)     |      | 3.741 | 4.269 | 4.244 |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes   |      |      |
| Cap                        |      | 948   | 835   | 835   |      |      |
| Service Time               |      | 1.801 | 2.317 | 2.314 |      |      |
|                            |      |       |       |       |      |      |

HCM Lane V/C Ratio

**HCM Control Delay** 

**HCM Lane LOS** 

HCM 95th-tile Q

0.123

7.3

Α

0.4

0.109

7.8

Α

0.4

0.034

7.5

Α

|                            | •     | 7     | 4    | <b>†</b> | ļ     | 4     |
|----------------------------|-------|-------|------|----------|-------|-------|
| Lane Group                 | EBL   | EBR   | NBL  | NBT      | SBT   | SBR   |
| Lane Configurations        | N/    |       |      | र्स      | 1     |       |
| Traffic Volume (vph)       | 15    | 1     | 2    | 204      | 153   | 7     |
| Future Volume (vph)        | 15    | 1     | 2    | 204      | 153   | 7     |
| Ideal Flow (vphpl)         | 1900  | 1900  | 1900 | 1900     | 1900  | 1900  |
| Grade (%)                  | 9%    |       |      | 6%       | -12%  |       |
| Lane Util. Factor          | 1.00  | 1.00  | 1.00 | 1.00     | 1.00  | 1.00  |
| Frt                        | 0.994 |       |      |          | 0.994 |       |
| Flt Protected              | 0.954 |       |      |          |       |       |
| Satd. Flow (prot)          | 1721  | 0     | 0    | 1807     | 1964  | 0     |
| Flt Permitted              | 0.954 |       |      |          |       |       |
| Satd. Flow (perm)          | 1721  | 0     | 0    | 1807     | 1964  | 0     |
| Link Speed (mph)           | 30    |       |      | 30       | 30    |       |
| Link Distance (ft)         | 572   |       |      | 413      | 453   |       |
| Travel Time (s)            | 13.0  |       |      | 9.4      | 10.3  |       |
| Peak Hour Factor           | 0.67  | 0.67  | 0.87 | 0.87     | 0.78  | 0.78  |
| Heavy Vehicles (%)         | 0%    | 0%    | 0%   | 2%       | 2%    | 0%    |
| Adj. Flow (vph)            | 22    | 1     | 2    | 234      | 196   | 9     |
| Shared Lane Traffic (%)    |       |       |      |          |       |       |
| Lane Group Flow (vph)      | 23    | 0     | 0    | 236      | 205   | 0     |
| Enter Blocked Intersection | No    | No    | No   | No       | No    | No    |
| Lane Alignment             | Left  | Right | Left | Left     | Left  | Right |
| Median Width(ft)           | 12    |       |      | 0        | 0     |       |
| Link Offset(ft)            | 0     |       |      | 0        | 0     |       |
| Crosswalk Width(ft)        | 16    |       |      | 16       | 16    |       |
| Two way Left Turn Lane     |       |       |      |          |       |       |
| Headway Factor             | 1.06  | 1.06  | 1.04 | 1.04     | 0.93  | 0.93  |
| Turning Speed (mph)        | 15    | 9     | 15   |          |       | 9     |
| Sign Control               | Stop  |       |      | Stop     | Stop  |       |
| Intersection Summary       |       |       |      |          |       |       |
| Area Type: C               | )ther |       |      |          |       |       |

| Intersection               |         |             |          |          |         |      |
|----------------------------|---------|-------------|----------|----------|---------|------|
| Intersection Delay, s/veh  | 8.6     |             |          |          |         |      |
| Intersection LOS           | Α       |             |          |          |         |      |
| III.O.3.GUIOII LOJ         |         |             |          |          |         |      |
|                            |         |             |          |          |         |      |
| Movement                   | EBL     | EBR         | NBL      | NBT      | SBT     | SBR  |
| Lane Configurations        | NA.     |             |          | र्       | 1       |      |
| Traffic Vol, veh/h         | 15      | 1           | 2        | 204      | 153     | 7    |
| Future Vol, veh/h          | 15      | 1           | 2        | 204      | 153     | 7    |
| Peak Hour Factor           | 0.67    | 0.67        | 0.87     | 0.87     | 0.78    | 0.78 |
| Heavy Vehicles, %          | 0       | 0           | 0        | 2        | 2       | 0    |
| Mvmt Flow                  | 22      | 1           | 2        | 234      | 196     | 9    |
| Number of Lanes            | 1       | 0           | 0        | 1        | 1       | 0    |
| Approach                   | EB      |             | NB       |          | SB      |      |
|                            | LD      |             | SB       |          | NB      |      |
| Opposing Approach          | 0       |             |          |          |         |      |
| Opposing Lanes             | 0<br>SB |             | 1<br>EB  |          | 1       |      |
| Conflicting Approach Left  |         |             |          |          | 0       |      |
| Conflicting Lanes Left     | 1<br>ND |             | 1        |          | 0       |      |
| Conflicting Approach Right | NB      |             | 0        |          | EB<br>1 |      |
| Conflicting Lanes Right    | 1       |             | 0        |          | •       |      |
| HCM Control Delay          | 8.2     |             | 8.7      |          | 8.5     |      |
| HCM LOS                    | Α       |             | Α        |          | Α       |      |
|                            |         |             |          |          |         |      |
| Lane                       |         | NBLn1       | EBLn1    | SBLn1    |         |      |
| Vol Left, %                |         | 1%          | 94%      | 0%       |         |      |
| Vol Thru, %                |         | 99%         | 0%       | 96%      |         |      |
| Vol Right, %               |         | 0%          | 6%       | 4%       |         |      |
| Sign Control               |         | Stop        | Stop     | Stop     |         |      |
| Traffic Vol by Lane        |         | 206         | 16       | 160      |         |      |
| LT Vol                     |         | 2           | 15       | 0        |         |      |
| Through Vol                |         | 204         | 0        | 153      |         |      |
| RT Vol                     |         | 0           | 1        | 7        |         |      |
| Lane Flow Rate             |         | 237         | 24       | 205      |         |      |
| Geometry Grp               |         | 1           | 1        | 1        |         |      |
| Degree of Util (X)         |         | 0.269       | 0.033    | 0.235    |         |      |
| Departure Headway (Hd)     |         | 4.096       | 4.992    | 4.126    |         |      |
| Convergence, Y/N           |         | Yes         | Yes      | Yes      |         |      |
| Cap                        |         | 867         | 721      | 859      |         |      |
| Service Time               |         | 2.166       | 2.992    | 2.201    |         |      |
| HCM Lane V/C Ratio         |         | 0.273       | 0.033    | 0.239    |         |      |
| HCM Control Delay          |         | 8.7         | 8.2      | 8.5      |         |      |
| HCM Lane LOS               |         | <b>U.</b> 7 | - · -    | 0.0      |         |      |
| HOW LAND LOS               |         | Α           | Α        | Α        |         |      |
| HCM 95th-tile Q            |         | A<br>1.1    | A<br>0.1 | A<br>0.9 |         |      |

|                            | ۶          | •     | 1      | 1               | Ţ               | 1     |
|----------------------------|------------|-------|--------|-----------------|-----------------|-------|
| Lane Group                 | EBL        | EBR   | NBL    | NBT             | SBT             | SBR   |
| Lane Configurations        | M          |       |        | ર્ન             | ĵ.              |       |
| Traffic Volume (vph)       | 112        | 67    | 75     | 514             | 714             | 70    |
| Future Volume (vph)        | 112        | 67    | 75     | 514             | 714             | 70    |
| Ideal Flow (vphpl)         | 1900       | 1900  | 1900   | 1900            | 1900            | 1900  |
| Lane Width (ft)            | 13         | 12    | 12     | 16              | 12              | 12    |
| Grade (%)                  | 2%         |       |        | 1%              | 1%              |       |
| Lane Util. Factor          | 1.00       | 1.00  | 1.00   | 1.00            | 1.00            | 1.00  |
| Frt                        | 0.950      |       |        |                 | 0.988           |       |
| Flt Protected              | 0.970      |       |        | 0.994           |                 |       |
| Satd. Flow (prot)          | 1756       | 0     | 0      | 2088            | 1831            | 0     |
| Flt Permitted              | 0.970      |       |        | 0.801           |                 |       |
| Satd. Flow (perm)          | 1756       | 0     | 0      | 1683            | 1831            | 0     |
| Right Turn on Red          |            | Yes   |        |                 |                 | Yes   |
| Satd. Flow (RTOR)          | 33         |       |        |                 | 10              |       |
| Link Speed (mph)           | 30         |       |        | 40              | 40              |       |
| Link Distance (ft)         | 318        |       |        | 1043            | 324             |       |
| Travel Time (s)            | 7.2        |       |        | 17.8            | 5.5             |       |
| Peak Hour Factor           | 0.94       | 0.94  | 0.94   | 0.94            | 0.94            | 0.94  |
| Adj. Flow (vph)            | 119        | 71    | 80     | 547             | 760             | 74    |
| Shared Lane Traffic (%)    |            |       |        |                 | 1-              |       |
| Lane Group Flow (vph)      | 190        | 0     | 0      | 627             | 834             | 0     |
| Enter Blocked Intersection | No         | No    | No     | No              | No              | No    |
| Lane Alignment             | Left       | Right | Left   | Left            | Left            | Right |
| Median Width(ft)           | 13         | J     |        | 0               | 0               | J     |
| Link Offset(ft)            | 0          |       |        | 0               | 0               |       |
| Crosswalk Width(ft)        | 16         |       |        | 16              | 16              |       |
| Two way Left Turn Lane     |            |       |        |                 |                 |       |
| Headway Factor             | 0.97       | 1.01  | 1.01   | 0.85            | 1.01            | 1.01  |
| Turning Speed (mph)        | 15         | 9     | 15     | 2.00            |                 | 9     |
| Number of Detectors        | 1          |       | 1      | 1               | 1               |       |
| Detector Template          |            |       | Left   |                 |                 |       |
| Leading Detector (ft)      | 35         |       | 20     | 6               | 6               |       |
| Trailing Detector (ft)     | -5         |       | 0      | 0               | 0               |       |
| Detector 1 Position(ft)    | -5         |       | 0      | 0               | 0               |       |
| Detector 1 Size(ft)        | 40         |       | 20     | 6               | 6               |       |
| Detector 1 Type            | CI+Ex      |       | CI+Ex  |                 | CI+Ex           |       |
| Detector 1 Channel         | OITEX      |       | OFFER  | OHLA            | OFFER           |       |
| Detector 1 Extend (s)      | 0.0        |       | 0.0    | 0.0             | 0.0             |       |
| Detector 1 Queue (s)       | 0.0        |       | 0.0    | 0.0             | 0.0             |       |
| Detector 1 Delay (s)       | 0.0        |       | 0.0    | 0.0             | 0.0             |       |
| Turn Type                  | Prot       |       | Perm   | NA              | NA              |       |
| Protected Phases           | 4          |       | FCIIII | 2               | NA<br>6         |       |
| Permitted Phases           | 4          |       | 2      |                 | U               |       |
| Detector Phase             | 4          |       | 2      | 2               | 6               |       |
| Switch Phase               | 4          |       | Z      | Z               | 0               |       |
|                            | ΕΛ         |       | ΕΛ     | ΕO              | E 0             |       |
| Minimum Initial (s)        | 5.0        |       | 5.0    | 5.0             | 5.0             |       |
| Minimum Split (s)          | 23.0       |       | 23.0   | 23.0            | 23.0            |       |
| Total Split (s)            | 30.0       |       | 60.0   | 60.0            | 60.0            |       |
| Total Split (%)            | 33.3%      |       | 66.7%  | 66.7%           | 66.7%           |       |
| Maximum Green (s)          | 25.0       |       | 55.0   | 55.0            | 55.0            |       |
| Yellow Time (s)            | 4.0        |       | 4.0    | 4.0             | 4.0             |       |
| All-Red Time (s)           | 1.0<br>0.0 |       | 1.0    | 1.0<br>0.0      | 1.0<br>0.0      |       |
| Lost Time Adjust (s)       |            |       |        | $\alpha \alpha$ | $\alpha \alpha$ |       |

Synchro 11 Report Page 1

|                           | ٨          | *        | 4         | Ť      | ţ    | ~                      |   |
|---------------------------|------------|----------|-----------|--------|------|------------------------|---|
| Lane Group                | EBL        | EBR      | NBL       | NBT    | SBT  | SBR                    |   |
| Total Lost Time (s)       | 5.0        |          |           | 5.0    | 5.0  |                        |   |
| Lead/Lag                  |            |          |           |        |      |                        |   |
| Lead-Lag Optimize?        |            |          |           |        |      |                        |   |
| Vehicle Extension (s)     | 2.0        |          | 2.0       | 2.0    | 2.0  |                        |   |
| Recall Mode               | None       |          | Max       | Max    | Max  |                        |   |
| Walk Time (s)             |            |          |           |        | 7.0  |                        |   |
| Flash Dont Walk (s)       |            |          |           |        | 11.0 |                        |   |
| Pedestrian Calls (#/hr)   |            |          |           |        | 0    |                        |   |
| v/c Ratio                 | 0.66       |          |           | 0.52   | 0.63 |                        |   |
| Control Delay             | 36.4       |          |           | 7.3    | 8.8  |                        |   |
| Queue Delay               | 0.0        |          |           | 0.0    | 0.0  |                        |   |
| Total Delay               | 36.4       |          |           | 7.3    | 8.8  |                        |   |
| Queue Length 50th (ft)    | 71         |          |           | 106    | 161  |                        |   |
| Queue Length 95th (ft)    | 134        |          |           | 228    | 342  |                        |   |
| Internal Link Dist (ft)   | 238        |          |           | 963    | 244  |                        |   |
| Turn Bay Length (ft)      |            |          |           |        |      |                        |   |
| Base Capacity (vph)       | 597        |          |           | 1212   | 1322 |                        |   |
| Starvation Cap Reductn    | 0          |          |           | 0      | 0    |                        |   |
| Spillback Cap Reductn     | 0          |          |           | 0      | 0    |                        |   |
| Storage Cap Reductn       | 0          |          |           | 0      | 0    |                        |   |
| Reduced v/c Ratio         | 0.32       |          |           | 0.52   | 0.63 |                        |   |
| Intersection Summary      |            |          |           |        |      |                        |   |
| J1 -                      | Other      |          |           |        |      |                        |   |
| Cycle Length: 90          |            |          |           |        |      |                        |   |
| Actuated Cycle Length: 76 | .5         |          |           |        |      |                        |   |
| Natural Cycle: 65         |            |          |           |        |      |                        |   |
| Control Type: Semi Act-Un | coord      |          |           |        |      |                        |   |
| Splits and Phases: 1: N   | YS Route 9 | D & Dela | averane A | Avenue |      |                        |   |
| <b>4</b>                  | . o riouto | 2 4 2011 |           |        |      | <b>≯</b> <sub>04</sub> |   |
| 02<br>60 s                |            |          |           |        |      | 30 s                   | - |
| 00.5                      |            |          |           |        |      | 50 8                   |   |
| <b>♦</b> Ø6               |            |          |           |        |      |                        |   |
| 60 s                      |            |          |           |        |      |                        |   |

|                              | ۶    | •    | 4        | Ť    | ļ    | 1    |
|------------------------------|------|------|----------|------|------|------|
| Movement                     | EBL  | EBR  | NBL      | NBT  | SBT  | SBR  |
| Lane Configurations          | N/   |      |          | 4    | 7    |      |
| Traffic Volume (veh/h)       | 112  | 67   | 75       | 514  | 714  | 70   |
| Future Volume (veh/h)        | 112  | 67   | 75       | 514  | 714  | 70   |
| Initial Q (Qb), veh          | 0    | 0    | 0        | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 | 1.00 | 1.00     |      |      | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach        | No   | 1.00 | 1.00     | No   | No   | 1.00 |
| Adj Sat Flow, veh/h/ln       | 1921 | 1847 | 1864     | 1939 | 1864 | 1864 |
| Adj Flow Rate, veh/h         | 119  | 71   | 80       | 547  | 760  | 74   |
| Peak Hour Factor             | 0.94 | 0.94 | 0.94     | 0.94 | 0.94 | 0.94 |
| Percent Heavy Veh, %         | 0.94 | 0.94 | 0.94     | 0.94 | 0.94 | 0.94 |
|                              | 146  | 87   | 156      | 1043 | 1225 | 119  |
| Cap, veh/h                   |      |      |          |      |      |      |
| Arrive On Green              | 0.13 | 0.13 | 0.73     | 0.73 | 0.73 | 0.73 |
| Sat Flow, veh/h              | 1090 | 650  | 139      | 1424 | 1672 | 163  |
| Grp Volume(v), veh/h         | 191  | 0    | 627      | 0    | 0    | 834  |
| Grp Sat Flow(s), veh/h/ln    | 1749 | 0    | 1564     | 0    | 0    | 1835 |
| Q Serve(g_s), s              | 8.0  | 0.0  | 2.2      | 0.0  | 0.0  | 16.7 |
| Cycle Q Clear(g_c), s        | 8.0  | 0.0  | 19.0     | 0.0  | 0.0  | 16.7 |
| Prop In Lane                 | 0.62 | 0.37 | 0.13     |      |      | 0.09 |
| Lane Grp Cap(c), veh/h       | 235  | 0    | 1200     | 0    | 0    | 1344 |
| V/C Ratio(X)                 | 0.81 | 0.00 | 0.52     | 0.00 | 0.00 | 0.62 |
| Avail Cap(c_a), veh/h        | 582  | 0    | 1200     | 0    | 0    | 1344 |
| HCM Platoon Ratio            | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00 | 1.00     | 0.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh     | 31.6 | 0.0  | 4.1      | 0.0  | 0.0  | 4.9  |
| Incr Delay (d2), s/veh       | 2.6  | 0.0  | 1.6      | 0.0  | 0.0  | 2.2  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 3.4  | 0.0  | 2.6      | 0.0  | 0.0  | 4.2  |
| Unsig. Movement Delay, s/ve  |      | 0.0  | 2.0      | 0.0  | 0.0  | 7.2  |
| LnGrp Delay(d),s/veh         | 34.2 | 0.0  | 5.7      | 0.0  | 0.0  | 7.1  |
| LnGrp LOS                    | C C  | Α    | 3.7<br>A | Α    | Α    | Α    |
|                              | 191  |      |          |      |      |      |
| Approach Vol, veh/h          |      |      |          | 627  | 834  |      |
| Approach LOS                 | 34.2 |      |          | 5.7  | 7.1  |      |
| Approach LOS                 | С    |      |          | Α    | Α    |      |
| Timer - Assigned Phs         |      | 2    |          | 4    |      | 6    |
| Phs Duration (G+Y+Rc), s     |      | 60.0 |          | 15.1 |      | 60.0 |
| Change Period (Y+Rc), s      |      | 5.0  |          | 5.0  |      | 5.0  |
| Max Green Setting (Gmax), s  | 3    | 55.0 |          | 25.0 |      | 55.0 |
| Max Q Clear Time (q_c+l1), s |      | 21.0 |          | 10.0 |      | 18.7 |
| Green Ext Time (p_c), s      | _    | 1.0  |          | 0.3  |      | 1.0  |
| -                            |      | 1.0  |          | 0.0  |      | 1.0  |
| Intersection Summary         |      |      |          |      |      |      |
| HCM 6th Ctrl Delay           |      |      | 9.7      |      |      |      |
| HCM 6th LOS                  |      |      | Α        |      |      |      |
| Notes                        |      |      |          |      |      |      |

User approved volume balancing among the lanes for turning movement.

|                            | ۶     | 7     | 1    | Ť     | ļ     | 1     |
|----------------------------|-------|-------|------|-------|-------|-------|
| Lane Group                 | EBL   | EBR   | NBL  | NBT   | SBT   | SBR   |
| Lane Configurations        | Y     |       |      | ર્ન   | 13    |       |
| Traffic Volume (vph)       | 22    | 30    | 32   | 567   | 740   | 42    |
| Future Volume (vph)        | 22    | 30    | 32   | 567   | 740   | 42    |
| Ideal Flow (vphpl)         | 1900  | 1900  | 1900 | 1900  | 1900  | 1900  |
| Grade (%)                  | 2%    |       |      | 3%    | -1%   |       |
| Lane Util. Factor          | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00  |
| Frt                        | 0.922 |       |      |       | 0.993 |       |
| Flt Protected              | 0.979 |       |      | 0.997 |       |       |
| Satd. Flow (prot)          | 1665  | 0     | 0    | 1825  | 1842  | 0     |
| Flt Permitted              | 0.979 |       |      | 0.997 |       |       |
| Satd. Flow (perm)          | 1665  | 0     | 0    | 1825  | 1842  | 0     |
| Link Speed (mph)           | 30    |       |      | 30    | 30    |       |
| Link Distance (ft)         | 904   |       |      | 139   | 1043  |       |
| Travel Time (s)            | 20.5  |       |      | 3.2   | 23.7  |       |
| Peak Hour Factor           | 0.87  | 0.87  | 0.97 | 0.97  | 0.89  | 0.89  |
| Heavy Vehicles (%)         | 2%    | 2%    | 6%   | 2%    | 3%    | 2%    |
| Adj. Flow (vph)            | 25    | 34    | 33   | 585   | 831   | 47    |
| Shared Lane Traffic (%)    |       |       |      |       |       |       |
| Lane Group Flow (vph)      | 59    | 0     | 0    | 618   | 878   | 0     |
| Enter Blocked Intersection | No    | No    | No   | No    | No    | No    |
| Lane Alignment             | Left  | Right | Left | Left  | Left  | Right |
| Median Width(ft)           | 12    |       |      | 0     | 0     |       |
| Link Offset(ft)            | 0     |       |      | 0     | 0     |       |
| Crosswalk Width(ft)        | 16    |       |      | 16    | 16    |       |
| Two way Left Turn Lane     |       |       |      |       |       |       |
| Headway Factor             | 1.01  | 1.01  | 1.02 | 1.02  | 0.99  | 0.99  |
| Turning Speed (mph)        | 15    | 9     | 15   |       |       | 9     |
| Sign Control               | Stop  |       |      | Free  | Free  |       |
| Intersection Summary       |       |       |      |       |       |       |
| Area Type: C               | )ther |       |      |       |       |       |

| 1.6    |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBL    | EBR                                                                           | NBL                                                                                                                                                                                        | NBT                                                                                                                                                                                                                                                                          | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | 30                                                                            | 32                                                                                                                                                                                         |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -<br>- |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0      | -                                                                             | _                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •      |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 25     | 34                                                                            | 33                                                                                                                                                                                         | ეგე                                                                                                                                                                                                                                                                          | 831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Minor2 | N                                                                             | Major1                                                                                                                                                                                     | N                                                                                                                                                                                                                                                                            | /lajor2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1506   |                                                                               |                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | _                                                                             | _                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                               | -                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | 6 42                                                                          | 4 16                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                               | -                                                                                                                                                                                          |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                                               | _                                                                                                                                                                                          |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                               |                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | 341                                                                           | 755                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | -                                                                             | -                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 483    | -                                                                             | -                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| . 10/  | 241                                                                           | 750                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | -                                                                             | -                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | -                                                                             | -                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 483    | -                                                                             | -                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FR     |                                                                               | NR                                                                                                                                                                                         |                                                                                                                                                                                                                                                                              | SR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| _      |                                                                               | 0.3                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Е      |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| mt     | NBL                                                                           | NBT E                                                                                                                                                                                      | EBL <sub>n1</sub>                                                                                                                                                                                                                                                            | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | 753                                                                           | -                                                                                                                                                                                          | 176                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | 0.044                                                                         | -                                                                                                                                                                                          | 0.34                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | 10                                                                            | 0                                                                                                                                                                                          | .35 h                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| s)     | 10<br>R                                                                       | 0<br>Δ                                                                                                                                                                                     | 35.6<br>F                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | 10<br>B<br>0.1                                                                | 0<br>A                                                                                                                                                                                     | 35.6<br>E<br>1.4                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | EBL  22 22 7 0 Stop - 0 9e, # 0 2 87 2 25  Minor2 1506 855 651 6.82 5.82 5.82 | EBL EBR  22 30 22 30 7 0 0 Stop Stop - None 0 39e, # 0 2 87 87 2 2 25 34  Minor2  1506 855 855 651 6.82 6.42 5.82 5.82 3.518 3.318 113 341 379 483 106 341 106 354 483 EB S 35.6 E  mt NBL | EBL EBR NBL  22 30 32 22 30 32 7 0 0 0 0 Stop Stop Free - None 0 0 0 0 0 2 87 87 97 2 2 6 25 34 33  Minor2 Major1  1506 855 878 855 651 6.82 6.42 4.16 5.82 5.82 3.518 3.318 2.254 113 341 753 379 483  106 341 753 379 483  106 341 753 106 354 354 483  EB NB 8 35.6 0.5 E | EBL EBR NBL NBT  22 30 32 567  22 30 32 567  7 0 0 0 0 0  Stop Stop Free Free  - None  0 0  2 - 3  87 87 97 97  2 2 6 2  25 34 33 585   Minor2 Major1 N  1506 855 878 0  855  651  6.82 6.42 4.16 -  5.82  5.82  5.82  3.518 3.318 2.254 -  113 341 753 -  379  483  5 106 341 753 -  5 106  5 106 341 753 -  5 106  5 106 341 753 -  5 106  5 106 354  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355  5 106 355 | EBL         EBR         NBL         NBT         SBT           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td< td=""></td<> |

| Lane Group         WBL         WBR         NET         NER         SWL         SWT           Lane Configurations         Y         1         4         1         1         4         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Traffic Volume (vph)         65         15         31         51         8         10           Future Volume (vph)         65         15         31         51         8         10           Ideal Flow (vphpl)         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900                       |
| Future Volume (vph)         65         15         31         51         8         10           Ideal Flow (vphpl)         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900               |
| Ideal Flow (vphpl)         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         0%           Lane Util. Factor         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00 <td< td=""></td<> |
| Grade (%)         3%         -4%         0%           Lane Util. Factor         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                  |
| Lane Util. Factor       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.                                                                                            |
| Frt         0.975         0.916           Flt Protected         0.961         0.978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Flt Protected 0.961 0.978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C-td Flow (see t) 1/00 0 1/00 0 0 1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Satd. Flow (prot) 1698 0 1699 0 0 1858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Flt Permitted 0.961 0.978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Satd. Flow (perm) 1698 0 1699 0 0 1858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Link Speed (mph) 30 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Link Distance (ft) 904 626 620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Travel Time (s) 20.5 14.2 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Peak Hour Factor 0.82 0.82 0.66 0.66 0.61 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Heavy Vehicles (%) 4% 0% 2% 6% 0% 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Adj. Flow (vph) 79 18 47 77 13 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Shared Lane Traffic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lane Group Flow (vph) 97 0 124 0 0 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Enter Blocked Intersection No No No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Lane Alignment Left Right Left Left Left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Median Width(ft) 12 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Link Offset(ft) 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Crosswalk Width(ft) 16 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Two way Left Turn Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Headway Factor 1.02 1.02 0.97 0.97 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Turning Speed (mph) 15 9 9 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sign Control Stop Stop Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Area Type: Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Intersection               |      |       |       |       |      |      |
|----------------------------|------|-------|-------|-------|------|------|
| Intersection Delay, s/veh  | 7.6  |       |       |       |      |      |
| Intersection LOS           | Α    |       |       |       |      |      |
|                            |      |       |       |       |      |      |
| Movement                   | WBL  | WBR   | NET   | NER   | SWL  | SWT  |
| Lane Configurations        | N.F  |       | 1     |       |      | र्स  |
| Traffic Vol, veh/h         | 65   | 15    | 31    | 51    | 8    | 10   |
| Future Vol, veh/h          | 65   | 15    | 31    | 51    | 8    | 10   |
| Peak Hour Factor           | 0.82 | 0.82  | 0.66  | 0.66  | 0.61 | 0.61 |
| Heavy Vehicles, %          | 4    | 0     | 2     | 6     | 0    | 0    |
| Mvmt Flow                  | 79   | 18    | 47    | 77    | 13   | 16   |
| Number of Lanes            | 1    | 0     | 1     | 0     | 0    | 1    |
| Approach                   | WB   |       | NE    |       | SW   |      |
| Opposing Approach          |      |       | SW    |       | NE   |      |
| Opposing Lanes             | 0    |       | 1     |       | 1    |      |
| Conflicting Approach Left  | NE   |       | •     |       | WB   |      |
| Conflicting Lanes Left     | 1    |       | 0     |       | 1    |      |
| Conflicting Approach Right | SW   |       | WB    |       | •    |      |
| Conflicting Lanes Right    | 1    |       | 1     |       | 0    |      |
| HCM Control Delay          | 7.9  |       | 7.4   |       | 7.5  |      |
| HCM LOS                    | Α    |       | Α     |       | Α    |      |
|                            |      |       |       |       |      |      |
| Lane                       |      | NELn1 | WBLn1 | SWLn1 |      |      |
| Vol Left, %                |      | 0%    | 81%   | 44%   |      |      |
| Vol Thru, %                |      | 38%   | 0%    | 56%   |      |      |
| Vol Right, %               |      | 62%   | 19%   | 0%    |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |      | 82    | 80    | 18    |      |      |
| LT Vol                     |      | 0     | 65    | 8     |      |      |
| Through Vol                |      | 31    | 0     | 10    |      |      |
| RT Vol                     |      | 51    | 15    | 0     |      |      |
| Lane Flow Rate             |      | 124   | 98    | 30    |      |      |
| Geometry Grp               |      | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |      | 0.13  | 0.116 | 0.035 |      |      |
| Departure Headway (Hd)     |      | 3.754 | 4.282 | 4.256 |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes   |      |      |
| Cap                        |      | 944   | 831   | 831   |      |      |
| Service Time               |      | 1.82  | 2.337 | 2.333 |      |      |
|                            |      |       |       |       |      |      |

HCM Lane V/C Ratio

**HCM Control Delay** 

**HCM Lane LOS** 

HCM 95th-tile Q

0.131

7.4

Α

0.4

0.118

7.9

0.4

Α

0.036

7.5

Α

#### 4: Main Street /Channingville Road & Reed Avenue

|                               | ٨     | •     | 1    | 1    | ļ     | 1     |
|-------------------------------|-------|-------|------|------|-------|-------|
| Lane Group                    | EBL   | EBR   | NBL  | NBT  | SBT   | SBR   |
| Lane Configurations           | N/    |       |      | ર્ન  | 13    |       |
| Traffic Volume (vph)          | 16    | 1     | 2    | 216  | 162   | 7     |
| Future Volume (vph)           | 16    | 1     | 2    | 216  | 162   | 7     |
| Ideal Flow (vphpl)            | 1900  | 1900  | 1900 | 1900 | 1900  | 1900  |
| Grade (%)                     | 9%    |       |      | 6%   | -12%  |       |
| Lane Util. Factor             | 1.00  | 1.00  | 1.00 | 1.00 | 1.00  | 1.00  |
| Frt                           | 0.995 |       |      |      | 0.994 |       |
| Flt Protected                 | 0.954 |       |      |      |       |       |
| Satd. Flow (prot)             | 1722  | 0     | 0    | 1807 | 1964  | 0     |
| Flt Permitted                 | 0.954 |       |      |      |       |       |
| Satd. Flow (perm)             | 1722  | 0     | 0    | 1807 | 1964  | 0     |
| Link Speed (mph)              | 30    |       |      | 30   | 30    |       |
| Link Distance (ft)            | 572   |       |      | 413  | 453   |       |
| Travel Time (s)               | 13.0  |       |      | 9.4  | 10.3  |       |
| Peak Hour Factor              | 0.67  | 0.67  | 0.87 | 0.87 | 0.78  | 0.78  |
| Heavy Vehicles (%)            | 0%    | 0%    | 0%   | 2%   | 2%    | 0%    |
| Adj. Flow (vph)               | 24    | 1     | 2    | 248  | 208   | 9     |
| Shared Lane Traffic (%)       |       |       |      |      |       |       |
| Lane Group Flow (vph)         | 25    | 0     | 0    | 250  | 217   | 0     |
| Enter Blocked Intersection    | No    | No    | No   | No   | No    | No    |
| Lane Alignment                | Left  | Right | Left | Left | Left  | Right |
| Median Width(ft)              | 12    | _     |      | 0    | 0     | _     |
| Link Offset(ft)               | 0     |       |      | 0    | 0     |       |
| Crosswalk Width(ft)           | 16    |       |      | 16   | 16    |       |
| Two way Left Turn Lane        |       |       |      |      |       |       |
| Headway Factor                | 1.06  | 1.06  | 1.04 | 1.04 | 0.93  | 0.93  |
| Turning Speed (mph)           | 15    | 9     | 15   |      |       | 9     |
| Sign Control                  | Stop  |       |      | Stop | Stop  |       |
| Intersection Summary          |       |       |      |      |       |       |
| Area Type: C                  | )ther |       |      |      |       |       |
| O - utual Tama Huadanadi - ad |       |       |      |      |       |       |

| lut ana attau              |       |       |       |       |      |      |
|----------------------------|-------|-------|-------|-------|------|------|
| Intersection Delay alveh   | 0.7   |       |       |       |      |      |
| Intersection Delay, s/veh  | 8.7   |       |       |       |      |      |
| Intersection LOS           | Α     |       |       |       |      |      |
|                            |       |       |       |       |      |      |
| Movement                   | EBL   | EBR   | NBL   | NBT   | SBT  | SBR  |
| Lane Configurations        | N. W. |       |       | ની    | Þ    |      |
| Traffic Vol, veh/h         | 16    | 1     | 2     | 216   | 162  | 7    |
| Future Vol, veh/h          | 16    | 1     | 2     | 216   | 162  | 7    |
| Peak Hour Factor           | 0.67  | 0.67  | 0.87  | 0.87  | 0.78 | 0.78 |
| Heavy Vehicles, %          | 0     | 0     | 0     | 2     | 2    | 0    |
| Mvmt Flow                  | 24    | 1     | 2     | 248   | 208  | 9    |
| Number of Lanes            | 1     | 0     | 0     | 1     | 1    | 0    |
| Approach                   | EB    |       | NB    |       | SB   |      |
| Opposing Approach          |       |       | SB    |       | NB   |      |
| Opposing Lanes             | 0     |       | 1     |       | 1    |      |
| Conflicting Approach Left  | SB    |       | EB    |       |      |      |
| Conflicting Lanes Left     | 1     |       | 1     |       | 0    |      |
| Conflicting Approach Right | NB    |       |       |       | EB   |      |
| Conflicting Lanes Right    | 1     |       | 0     |       | 1    |      |
| HCM Control Delay          | 8.2   |       | 8.9   |       | 8.6  |      |
| HCM LOS                    | Α     |       | Α     |       | Α    |      |
|                            |       |       |       |       |      |      |
| Lane                       |       | NBLn1 | EBLn1 | SBLn1 |      |      |
| Vol Left, %                |       | 1%    | 94%   | 0%    |      |      |
| Vol Thru, %                |       | 99%   | 0%    | 96%   |      |      |
| Vol Right, %               |       | 0%    | 6%    | 4%    |      |      |
| Sign Control               |       | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |       | 218   | 17    | 169   |      |      |
| LT Vol                     |       | 2     | 16    | 0     |      |      |
| Through Vol                |       | 216   | 0     | 162   |      |      |
| RT Vol                     |       | 0     | 1     | 7     |      |      |
| Lane Flow Rate             |       | 251   | 25    | 217   |      |      |
| Geometry Grp               |       | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |       | 0.286 | 0.036 | 0.249 |      |      |
| Departure Headway (Hd)     |       | 4.11  | 5.05  | 4.142 |      |      |
| Convergence, Y/N           |       | Yes   | Yes   | Yes   |      |      |
| Cap                        |       | 864   | 713   | 856   |      |      |
| Service Time               |       | 2.184 | 3.05  | 2.223 |      |      |
| HCM Lane V/C Ratio         |       | 0.291 | 0.035 | 0.254 |      |      |
| HCM Control Delay          |       | 8.9   | 8.2   | 8.6   |      |      |

Α

**HCM Lane LOS** 

HCM 95th-tile Q

1.2

|                            | ٠     | •     | 1     | 1     | Ţ     | 1     |
|----------------------------|-------|-------|-------|-------|-------|-------|
| Lane Group                 | EBL   | EBR   | NBL   | NBT   | SBT   | SBR   |
| Lane Configurations        | **    |       |       | 4     | 1     |       |
| Traffic Volume (vph)       | 127   | 67    | 75    | 518   | 722   | 95    |
| Future Volume (vph)        | 127   | 67    | 75    | 518   | 722   | 95    |
| Ideal Flow (vphpl)         | 1900  | 1900  | 1900  | 1900  | 1900  | 1900  |
| Lane Width (ft)            | 13    | 12    | 12    | 16    | 12    | 12    |
| Grade (%)                  | 2%    |       |       | 1%    | 1%    |       |
| Lane Util. Factor          | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  |
| Frt                        | 0.953 |       |       |       | 0.984 |       |
| Flt Protected              | 0.968 |       |       | 0.994 |       |       |
| Satd. Flow (prot)          | 1758  | 0     | 0     | 2088  | 1824  | 0     |
| Flt Permitted              | 0.968 |       |       | 0.760 |       |       |
| Satd. Flow (perm)          | 1758  | 0     | 0     | 1596  | 1824  | 0     |
| Right Turn on Red          |       | Yes   |       |       |       | Yes   |
| Satd. Flow (RTOR)          | 29    |       |       |       | 14    |       |
| Link Speed (mph)           | 30    |       |       | 40    | 40    |       |
| Link Distance (ft)         | 318   |       |       | 1043  | 324   |       |
| Travel Time (s)            | 7.2   |       |       | 17.8  | 5.5   |       |
| Peak Hour Factor           | 0.94  | 0.94  | 0.94  | 0.94  | 0.94  | 0.94  |
| Adj. Flow (vph)            | 135   | 71    | 80    | 551   | 768   | 101   |
| Shared Lane Traffic (%)    |       |       |       |       |       |       |
| Lane Group Flow (vph)      | 206   | 0     | 0     | 631   | 869   | 0     |
| Enter Blocked Intersection | No    | No    | No    | No    | No    | No    |
| Lane Alignment             | Left  | Right | Left  | Left  | Left  | Right |
| Median Width(ft)           | 13    |       |       | 0     | 0     |       |
| Link Offset(ft)            | 0     |       |       | 0     | 0     |       |
| Crosswalk Width(ft)        | 16    |       |       | 16    | 16    |       |
| Two way Left Turn Lane     |       |       |       |       |       |       |
| Headway Factor             | 0.97  | 1.01  | 1.01  | 0.85  | 1.01  | 1.01  |
| Turning Speed (mph)        | 15    | 9     | 15    |       |       | 9     |
| Number of Detectors        | 1     |       | 1     | 1     | 1     |       |
| Detector Template          |       |       | Left  |       |       |       |
| Leading Detector (ft)      | 35    |       | 20    | 6     | 6     |       |
| Trailing Detector (ft)     | -5    |       | 0     | 0     | 0     |       |
| Detector 1 Position(ft)    | -5    |       | 0     | 0     | 0     |       |
| Detector 1 Size(ft)        | 40    |       | 20    | 6     | 6     |       |
| Detector 1 Type            | CI+Ex |       | CI+Ex | CI+Ex | CI+Ex |       |
| Detector 1 Channel         |       |       |       |       |       |       |
| Detector 1 Extend (s)      | 0.0   |       | 0.0   | 0.0   | 0.0   |       |
| Detector 1 Queue (s)       | 0.0   |       | 0.0   | 0.0   | 0.0   |       |
| Detector 1 Delay (s)       | 0.0   |       | 0.0   | 0.0   | 0.0   |       |
| Turn Type                  | Prot  |       | Perm  | NA    | NA    |       |
| Protected Phases           | 4     |       |       | 2     | 6     |       |
| Permitted Phases           |       |       | 2     |       |       |       |
| Detector Phase             | 4     |       | 2     | 2     | 6     |       |
| Switch Phase               |       |       |       |       |       |       |
| Minimum Initial (s)        | 5.0   |       | 5.0   | 5.0   | 5.0   |       |
| Minimum Split (s)          | 23.0  |       | 23.0  | 23.0  | 23.0  |       |
| Total Split (s)            | 30.0  |       | 60.0  | 60.0  | 60.0  |       |
| Total Split (%)            | 33.3% |       | 66.7% | 66.7% | 66.7% |       |
| Maximum Green (s)          | 25.0  |       | 55.0  | 55.0  | 55.0  |       |
| Yellow Time (s)            | 4.0   |       | 4.0   | 4.0   | 4.0   |       |
| All-Red Time (s)           | 1.0   |       | 1.0   | 1.0   | 1.0   |       |
| Lost Time Adjust (s)       | 0.0   |       |       | 0.0   | 0.0   |       |

Synchro 11 Report Page 1

Job# 16003191A - R.H.

|                          | ٨           | 7        | 1          | 1      | ļ    | 1   |
|--------------------------|-------------|----------|------------|--------|------|-----|
| Lane Group               | EBL         | EBR      | NBL        | NBT    | SBT  | SBR |
| Total Lost Time (s)      | 5.0         |          |            | 5.0    | 5.0  |     |
| Lead/Lag                 |             |          |            |        |      |     |
| Lead-Lag Optimize?       |             |          |            |        |      |     |
| Vehicle Extension (s)    | 2.0         |          | 2.0        | 2.0    | 2.0  |     |
| Recall Mode              | None        |          | Max        | Max    | Max  |     |
| Walk Time (s)            |             |          |            |        | 7.0  |     |
| Flash Dont Walk (s)      |             |          |            |        | 11.0 |     |
| Pedestrian Calls (#/hr)  |             |          |            |        | 0    |     |
| v/c Ratio                | 0.68        |          |            | 0.56   | 0.67 |     |
| Control Delay            | 37.9        |          |            | 8.4    | 10.0 |     |
| Queue Delay              | 0.0         |          |            | 0.0    | 0.0  |     |
| Total Delay              | 37.9        |          |            | 8.4    | 10.0 |     |
| Queue Length 50th (ft)   | 81          |          |            | 118    | 183  |     |
| Queue Length 95th (ft)   | 148         |          |            | 257    | 394  |     |
| Internal Link Dist (ft)  | 238         |          |            | 963    | 244  |     |
| Turn Bay Length (ft)     |             |          |            |        |      |     |
| Base Capacity (vph)      | 588         |          |            | 1136   | 1303 |     |
| Starvation Cap Reductn   | 0           |          |            | 0      | 0    |     |
| Spillback Cap Reductn    | 0           |          |            | 0      | 0    |     |
| Storage Cap Reductn      | 0           |          |            | 0      | 0    |     |
| Reduced v/c Ratio        | 0.35        |          |            | 0.56   | 0.67 |     |
| Intersection Summary     |             |          |            |        |      |     |
| Area Type:               | Other       |          |            |        |      |     |
| Cycle Length: 90         |             |          |            |        |      |     |
| Actuated Cycle Length: 7 | 7.4         |          |            |        |      |     |
| Natural Cycle: 65        |             |          |            |        |      |     |
| Control Type: Semi Act-U | Incoord     |          |            |        |      |     |
| Splits and Phases: 1: N  | NYS Route 9 | D & Del: | averane A  | Avenue |      |     |
| ≪.                       | 110 Houte 7 | D a Doit | avergite 7 | Worldo |      |     |
| Ø2                       |             |          |            |        |      | 100 |
| 60 s                     |             |          |            |        |      | 16  |

| are Configurations raffic Volume (veh/h) 127 67 75 518 722 95 uture Volume (veh/h) 127 67 75 518 722 95 uture Volume (veh/h) 127 67 75 518 722 95 uture Volume (veh/h) 127 67 75 518 722 95 uture Volume (veh/h) 127 67 75 518 722 95 uture Volume (veh/h) 127 67 75 518 722 95 uture Volume (veh/h) 127 67 75 518 722 95 uture Volume (veh/h) 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | ۶    | •     | 1          | 1    | ļ    | 1    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|-------|------------|------|------|------|
| are Configurations raffic Volume (veh/h) 127 67 75 518 722 95 uture Volume (veh/h) 127 67 75 518 722 95 uture Volume (veh/h) 127 67 75 518 722 95 uture Volume (veh/h) 127 67 75 518 722 95 uture Volume (veh/h) 127 67 75 518 722 95 uture Volume (veh/h) 127 67 75 518 722 95 uture Volume (veh/h) 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Movement                | EBI  | EBR   | NBI        | NBT  | SBT  | SBR  |
| raffic Volume (veh/h) 127 67 75 518 722 95 uture Volume (veh/h) 127 67 75 518 722 95 uture Volume (veh/h) 127 67 75 518 722 95 nitial O (Ob), veh 0 0 0 0 0 0 0 red-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 rarking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 vork Zone On Approach No dj Sat Flow, veh/h/ln 1921 1847 1864 1939 1864 1864 dj Flow Rate, veh/h 135 71 80 551 768 101 redeak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 rercent Heavy Veh, % 2 2 2 2 2 2 2 2 2 rap, veh/h 164 86 147 990 1170 154 rrive On Green 0.14 0.14 0.72 0.72 0.72 0.72 rat Flow, veh/h/ln 1145 602 129 1365 1614 212 rrive On Green 0.14 0.14 0.72 0.72 0.72 0.72 rat Flow, veh/h/ln 1755 0 1495 0 0 1826 rap Sat Flow(s), veh/h/ln 1755 0 1495 0 0 1826 rap Sat Flow(s), veh/h/ln 1755 0 1495 0 0 1826 rap Cap Cap Colear(g_c), s 8.7 0.0 3.8 0.0 0.0 18.9 rop In Lane 0.65 0.34 0.13 0.12 rane Grp Cap(c), veh/h 578 0 1137 0 0 1324 r/C Ratio(X) 0.82 0.00 0.56 0.00 0.00 0.66 roal Cap Cap Cap (xeh/h 578 0 1137 0 0 1324 r/C Ratio(X) 0.82 0.00 0.56 0.00 0.00 0.66 roal Cap Cap (xeh/h 578 0 1137 0 0 1324 r/C Ratio(X) 0.82 0.00 0.56 0.00 0.00 0.00 red Sat Cap Cap (xeh/h 578 0 1137 0 0 1324 r/C Ratio(X) 0.82 0.00 0.56 0.00 0.00 0.00 r/C Ratio(X) 0.83 0.00 0.56 0.00 0.00 0.00 r/C Ratio(X) 0.84 0.00 0.00 0.00 0.00 r/C Ratio(X) 0.85 0.00 0.00 0.00 0.00 r/C Ratio(X) 0.00 0.00 0.00 0.00 r/C Ratio(X) 0.00 0.00 0.00 0.00 r/C Ratio(X) 0.00 0.00 |                         |      |       | HUL        |      |      | OBIN |
| tuture Volume (veh/h) 127 67 75 518 722 95 nitial Q (Qb), veh 0 0 0 0 0 0 0 0 0 ed-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 arking Bus, Adj 1.00 1.00 1.00 1.00 1.00 vork Zone On Approach No No No No dd Sat Flow, veh/h/ln 1921 1847 1864 1939 1864 1864 dj Flow Rate, veh/h 135 71 80 551 768 101 reak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 ercrent Heavy Veh, % 2 2 2 2 2 2 2 2 arg, veh/h 164 86 147 990 1170 154 arrive On Green 0.14 0.14 0.72 0.72 0.72 0.72 at Flow, veh/h 1145 602 129 1365 1614 212 Gry Volume(v), veh/h 207 0 631 0 0 869 arg Sat Flow(s), veh/h/ln 1755 0 1495 0 0 1826 Serve(g_s), s 8.7 0.0 3.8 0.0 0.0 18.9 rop In Lane 0.65 0.34 0.13 ane Grp Cap(c), veh/h 252 0 1137 0 0 1324 V/C Ratio(X) 0.82 0.00 0.56 0.00 0.00 0.66 vail Cap(c_a), veh/h 578 0 1137 0 0 1324 V/C Ratio(X) 0.82 0.00 0.56 0.00 0.00 0.66 vail Cap(c_a), veh/h 2.6 0.0 2.0 0.0 0.0 1.00 lniform Delay (d), s/veh 31.6 0.0 4.6 0.0 0.0 1.00 lniform Delay (d), s/veh 37.6 0.0 0.0 0.0 0.0 0.0 0.0 lniform Delay (d), s/veh 37.6 0.0 0.0 0.0 0.0 0.0 0.0 lniform Delay (d), s/veh 37.6 0.0 0.0 0.0 0.0 0.0 0.0 lniform Delay (d), s/veh 34.2 0.0 6.5 0.0 0.0 0.0 0.0 lniform Delay (d), s/veh 34.2 0.0 6.5 0.0 0.0 0.0 0.0 lniform Delay (d), s/veh 34.2 0.0 6.5 0.0 0.0 0.0 0.0 lniform Delay (d), s/veh 34.2 0.0 6.5 0.0 0.0 0.0 0.0 lniform Delay (d), s/veh 34.2 0.0 6.5 0.0 0.0 0.0 0.0 lniform Delay (d), s/veh 34.2 0.0 6.5 0.0 0.0 0.0 0.0 lniform Delay, s/veh nGrp Delay(d), s/veh 34.2 0.0 6.5 0.0 0.0 0.0 5.0 lnifiger Delay (d), s/veh 34.2 0.0 6.5 0.0 0.0 0.0 5.0 lnifiger Delay (d), s/veh 34.2 0.0 6.5 0.0 0.0 0.0 5.0 lnifiger Delay (d), s/veh 34.2 0.0 6.5 0.0 0.0 0.0 5.0 lnifiger Delay (d), s/veh 34.2 0.0 6.5 0.0 0.0 0.0 5.0 lnifiger Delay (d), s/veh 34.2 0.0 6.5 0.0 0.0 0.0 0.0 5.0 lnifiger Delay (d), s/veh 34.2 0.0 6.5 0.0 0.0 0.0 0.0 5.0 lnifiger Delay (d), s/veh 34.2 0.0 6.5 0.0 0.0 0.0 0.0 5.0 lnifiger Delay (d), s/veh 34.2 0.0 6.5 0.0 0.0 0.0 0.0 5.0 lnifiger Delay (d)                                                              |                         |      | 67    | 75         |      |      | 95   |
| nitial Q (Ob), veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |      |       |            |      |      |      |
| Ped-Bike Adj(A_pbT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |      |       |            |      |      |      |
| Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |      |       |            | U    | U    |      |
| Nork Zone On Ápproach (d) Sat Flow, veh/h/ln         No         No         No           (d) Sat Flow, veh/h/ln         1921         1847         1864         1939         1864         1864           (d) Flow Rate, veh/h         135         71         80         551         768         101           Veak Hour Factor         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |      |       |            | 1.00 | 1 00 |      |
| dij Sat Flow, veh/h/ln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |      | 1.00  | 1.00       |      |      | 1.00 |
| Adj Flow Rate, veh/h   135   71   80   551   768   101     Peak Hour Factor   0.94   0.94   0.94   0.94   0.94   0.94     Percent Heavy Veh, %   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |      | 40.47 | 10/1       |      |      | 40/4 |
| deak Hour Factor         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.72         0.02         0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |      |       |            |      |      |      |
| Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |      |       |            |      |      |      |
| Cap, veh/h         164         86         147         990         1170         154           Carrive On Green         0.14         0.14         0.72         0.72         0.72         0.72           Sat Flow, veh/h         1145         602         129         1365         1614         212           Gry Volume(v), veh/h         207         0         631         0         0         869           Gry Sat Flow(s), veh/h/In         1755         0         1495         0         0         1826           Q Serve(g_s), s         8.7         0.0         3.8         0.0         0.0         18.9           Opp In Lane         0.65         0.34         0.13         0.12         0.12           Jame Gry Cap(c), veh/h         252         0         1137         0         0         1324           JCC Ratio(X)         0.82         0.00         0.56         0.00         0.00         0.00         0.00           Jack Indication Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |      |       |            |      |      |      |
| Arrive On Green 0.14 0.14 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Percent Heavy Veh, %    | 2    |       |            | 2    |      |      |
| Arrive On Green 0.14 0.14 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cap, veh/h              | 164  | 86    | 147        | 990  | 1170 | 154  |
| Stat Flow, veh/h         1145         602         129         1365         1614         212           Gry Volume(v), veh/h         207         0         631         0         0         869           Gry Sat Flow(s), veh/h/ln         1755         0         1495         0         0         1826           Grop Sat Flow(s), veh/h/ln         1755         0         1495         0         0         1826           Grop Cap(s), s         8.7         0.0         3.8         0.0         0.0         18.9           Grop In Lane         0.65         0.34         0.13         0.12         0         1.2           ane Grp Cap(c), veh/h         252         0         1137         0         0         1324           I/C Ratio(X)         0.82         0.00         0.56         0.00         0.00         0.06           Avail Cap(c_a), veh/h         578         0         1137         0         0         1324           ICM Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Arrive On Green         |      |       | 0.72       | 0.72 | 0.72 | 0.72 |
| Gry Volume(v), veh/h         207         0         631         0         0         869           Gry Sat Flow(s), veh/h/In         1755         0         1495         0         0         1826           Q Serve(g_s), s         8.7         0.0         3.8         0.0         0.0         18.9           Cycle Q Clear(g_c), s         8.7         0.0         22.7         0.0         0.0         18.9           Prop In Lane         0.65         0.34         0.13         0.12         0.12           ane Grp Cap(c), veh/h         252         0         1137         0         0         1324           I/C Ratio(X)         0.82         0.00         0.56         0.00         0.00         0.66           avail Cap(c_a), veh/h         578         0         1137         0         0         1324           ICM Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sat Flow, veh/h         |      |       |            |      |      |      |
| Sirp Sat Flow(s),veh/h/ln         1755         0         1495         0         0         1826           2 Serve(g_s), s         8.7         0.0         3.8         0.0         0.0         18.9           Cycle Q Clear(g_c), s         8.7         0.0         22.7         0.0         0.0         18.9           Crop In Lane         0.65         0.34         0.13         0.12         0.0         0.0         1.02           ane Grp Cap(c), veh/h         252         0         1137         0         0         1324           I/C Ratio(X)         0.82         0.00         0.56         0.00         0.00         0.66           avail Cap(c_a), veh/h         578         0         1137         0         0         1324           ICM Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |      |       |            |      |      |      |
| 2 Serve(g_s), s 8.7 0.0 3.8 0.0 0.0 18.9 cycle Q Clear(g_c), s 8.7 0.0 22.7 0.0 0.0 18.9 cycle Q Clear(g_c), s 8.7 0.0 22.7 0.0 0.0 18.9 cycle Q Clear(g_c), s 8.7 0.0 22.7 0.0 0.0 18.9 cycle Q Clear(g_c), veh/h 252 0 1137 0 0 1324 cycle Q Clear(g_c), veh/h 252 0 1137 0 0 1324 cycle Q Clear(g_c), veh/h 578 0 1137 0 0 1324 cycle Q Clear(g_c), veh/h 578 0 1137 0 0 1324 cycle Q Clear Time (g_c, l), s 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |      |       |            |      |      |      |
| Cycle Q Clear(g_c), s 8.7 0.0 22.7 0.0 0.0 18.9 Prop In Lane 0.65 0.34 0.13 0.12 ane Grp Cap(c), veh/h 252 0 1137 0 0 1324 P/C Ratio(X) 0.82 0.00 0.56 0.00 0.00 0.66 evail Cap(c_a), veh/h 578 0 1137 0 0 1324 evail Cap(c_a), veh/h 578 0 1137 0 0 1324 evail Cap(c_a), veh/h 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Inform Delay (d), s/veh 31.6 0.0 4.6 0.0 0.0 0.0 1.00 Inform Delay (d2), s/veh 2.6 0.0 2.0 0.0 0.0 5.5 evail and Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Insig. Movement Delay, s/veh InGrp Delay(d), s/veh 34.2 0.0 6.5 0.0 0.0 8.0 evail BackOfQ(50%), veh/ln 3.7 0.0 2.9 0.0 0.0 5.0 evail BackOfQ(50%), veh/h 34.2 0.0 6.5 0.0 0.0 8.0 evail BackOfQ(50%), veh/h 207 631 869 evail BackOfQ(50%), veh/h 207 | •                       |      |       |            |      |      |      |
| O.65   O.34   O.13   O.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |      |       |            |      |      |      |
| ane Grp Cap(c), veh/h  Z52  0  1137  0  0  1324  Z/C Ratio(X)  0.82  0.00  0.56  0.00  0.00  0.66  ZVAII Cap(c_a), veh/h  578  0  1137  0  0  1324  Z/C Ratio(X)  0.82  0.00  0.56  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00   |                         |      |       |            | 0.0  | 0.0  |      |
| I/C Ratio(X)       0.82       0.00       0.56       0.00       0.00       0.66         Avail Cap(c_a), veh/h       578       0       1137       0       0       1324         ICM Platoon Ratio       1.00       1.00       1.00       1.00       1.00       1.00       1.00         Instream Filter(I)       1.00       0.00       1.00       0.00       0.00       0.00       1.00         Initial Complex (d), s/veh       31.6       0.0       4.6       0.0       0.0       0.0       5.5         Initial Q Delay(d3), s/veh       2.6       0.0       2.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0        0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |      |       |            |      |      |      |
| Avail Cap(c_a), veh/h 578 0 1137 0 0 1324 ICM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Inform Delay (d), s/veh 31.6 0.0 4.6 0.0 0.0 5.5 Incr Delay (d2), s/veh 2.6 0.0 2.0 0.0 0.0 2.6 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Insig. Movement Delay, s/veh InGrp Delay(d), s/veh 34.2 0.0 6.5 0.0 0.0 8.0 InGrp LOS C A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |      |       |            |      |      |      |
| CM Platoon Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V/C Ratio(X)            |      |       |            |      |      |      |
| ### Supproach Vol., veh/h   ### Supproach Vol., veh/h   ### Supproach LOS   ### Cassigned Phs   ### Cassig | Avail Cap(c_a), veh/h   |      |       |            |      |      |      |
| Iniform Delay (d), s/veh 31.6 0.0 4.6 0.0 0.0 5.5 ncr Delay (d2), s/veh 2.6 0.0 2.0 0.0 0.0 2.6 nitial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HCM Platoon Ratio       | 1.00 | 1.00  | 1.00       | 1.00 | 1.00 | 1.00 |
| Iniform Delay (d), s/veh 31.6 0.0 4.6 0.0 0.0 5.5 ncr Delay (d2), s/veh 2.6 0.0 2.0 0.0 0.0 2.6 nitial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Upstream Filter(I)      | 1.00 | 0.00  | 1.00       | 0.00 | 0.00 | 1.00 |
| ncr Delay (d2), s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |      |       |            |      |      |      |
| Initial Q Delay(d3),s/veh       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       5.0       0.0       0.0       5.0       0.0       0.0       5.0       0.0       0.0       5.0       0.0       0.0       8.0       0.0       0.0       8.0       0.0       0.0       8.0       0.0       0.0       8.0       0.0       0.0       8.0       0.0       0.0       8.0       0.0       0.0       8.0       0.0       0.0       8.0       0.0       0.0       8.0       0.0       0.0       8.0       0.0       0.0       8.0       0.0       0.0       8.0       0.0       0.0       8.0       0.0       0.0       0.0       8.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |      |       |            |      |      |      |
| Sile BackOfQ(50%),veh/ln       3.7       0.0       2.9       0.0       0.0       5.0         Insig. Movement Delay, s/veh       34.2       0.0       6.5       0.0       0.0       8.0         InGrp Delay(d),s/veh       34.2       0.0       6.5       0.0       0.0       8.0         InGrp LOS       C       A       A       A       A       A         Improach Vol, veh/h       207       631       869       869       869       8.0       869       8.0       869       8.0       869       8.0       869       8.0       869       8.0       869       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       8.0       9.0       9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |      |       |            |      |      |      |
| Insig. Movement Delay, s/veh   InGrp Delay(d),s/veh   34.2   0.0   6.5   0.0   0.0   8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |      |       |            |      |      |      |
| nGrp Delay(d),s/veh 34.2 0.0 6.5 0.0 0.0 8.0 nGrp LOS C A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , ,                     |      | 0.0   | Z.7        | 0.0  | 0.0  | 5.0  |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |      | 0.0   | <i>(</i> E | 0.0  | 0.0  | 0.0  |
| Approach Vol, veh/h 207 631 869 Approach Delay, s/veh 34.2 6.5 8.0 Approach LOS C A A  Imer - Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 60.0 15.9 60.0 Change Period (Y+Rc), s 5.0 5.0 5.0 Max Green Setting (Gmax), s 55.0 25.0 55.0 Max Q Clear Time (g_c+l1), s 24.7 10.7 20.9 Foreen Ext Time (p_c), s 1.0 0.3 1.1  Intersection Summary ICM 6th Ctrl Delay 10.7 ICM 6th LOS B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |      |       |            |      |      |      |
| Approach Delay, s/veh 34.2 6.5 8.0 Approach LOS C A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |      | A     | А          |      |      | A    |
| A   A   A   A   A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Approach Vol, veh/h     |      |       |            |      |      |      |
| imer - Assigned Phs         2         4         6           Phs Duration (G+Y+Rc), s         60.0         15.9         60.0           Change Period (Y+Rc), s         5.0         5.0         5.0           Max Green Setting (Gmax), s         55.0         25.0         55.0           Max Q Clear Time (g_c+l1), s         24.7         10.7         20.9           Green Ext Time (p_c), s         1.0         0.3         1.1           Intersection Summary           ICM 6th Ctrl Delay         10.7           ICM 6th LOS         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Approach Delay, s/veh   | 34.2 |       |            | 6.5  | 8.0  |      |
| imer - Assigned Phs         2         4         6           Phs Duration (G+Y+Rc), s         60.0         15.9         60.0           Change Period (Y+Rc), s         5.0         5.0         5.0           Max Green Setting (Gmax), s         55.0         25.0         55.0           Max Q Clear Time (g_c+l1), s         24.7         10.7         20.9           Green Ext Time (p_c), s         1.0         0.3         1.1           Intersection Summary           ICM 6th Ctrl Delay         10.7           ICM 6th LOS         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Approach LOS            | С    |       |            | Α    | Α    |      |
| Phs Duration (G+Y+Rc), s 60.0 15.9 60.0 Change Period (Y+Rc), s 5.0 5.0 5.0 Max Green Setting (Gmax), s 55.0 25.0 55.0 Max Q Clear Time (g_c+l1), s 24.7 10.7 20.9 Green Ext Time (p_c), s 1.0 0.3 1.1 Intersection Summary ICM 6th Ctrl Delay 10.7 ICM 6th LOS B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |      | 2     |            | 1    |      | 6    |
| Change Period (Y+Rc), s       5.0       5.0       5.0         Max Green Setting (Gmax), s       55.0       25.0       55.0         Max Q Clear Time (g_c+l1), s       24.7       10.7       20.9         Green Ext Time (p_c), s       1.0       0.3       1.1         Intersection Summary         ICM 6th Ctrl Delay       10.7         ICM 6th LOS       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |      |       |            |      |      |      |
| Max Green Setting (Gmax), s       55.0       25.0       55.0         Max Q Clear Time (g_c+l1), s       24.7       10.7       20.9         Green Ext Time (p_c), s       1.0       0.3       1.1         Intersection Summary         ICM 6th Ctrl Delay       10.7         ICM 6th LOS       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |      |       |            |      |      |      |
| Max Q Clear Time (g_c+I1), s 24.7 10.7 20.9  Green Ext Time (p_c), s 1.0 0.3 1.1  Intersection Summary  ICM 6th Ctrl Delay 10.7  ICM 6th LOS B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |      |       |            |      |      |      |
| Sreen Ext Time (p_c), s 1.0 0.3 1.1  Intersection Summary  ICM 6th Ctrl Delay 10.7  ICM 6th LOS B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |      |       |            |      |      |      |
| ICM 6th LOS  B  10.7  B  B  B  B  B  B  B  B  B  B  B  B  B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | S    |       |            |      |      |      |
| ICM 6th Ctrl Delay 10.7 ICM 6th LOS B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Green Ext Time (p_c), s |      | 1.0   |            | 0.3  |      | 1.1  |
| ICM 6th Ctrl Delay 10.7 ICM 6th LOS B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Intersection Summary    |      |       |            |      |      |      |
| ICM 6th LOS B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |      |       | 10.7       |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HCM 6th LOS             |      |       |            |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Notes                   |      |       |            |      |      |      |

User approved volume balancing among the lanes for turning movement.

|                            | ۶     | 7     | 1    | Ť     | ļ              | 1     |
|----------------------------|-------|-------|------|-------|----------------|-------|
| Lane Group                 | EBL   | EBR   | NBL  | NBT   | SBT            | SBR   |
| Lane Configurations        | Y     |       |      | ર્ન   | T <sub>2</sub> |       |
| Traffic Volume (vph)       | 27    | 45    | 57   | 567   | 740            | 50    |
| Future Volume (vph)        | 27    | 45    | 57   | 567   | 740            | 50    |
| Ideal Flow (vphpl)         | 1900  | 1900  | 1900 | 1900  | 1900           | 1900  |
| Grade (%)                  | 2%    |       |      | 3%    | -1%            |       |
| Lane Util. Factor          | 1.00  | 1.00  | 1.00 | 1.00  | 1.00           | 1.00  |
| Frt                        | 0.915 |       |      |       | 0.991          |       |
| Flt Protected              | 0.982 |       |      | 0.995 |                |       |
| Satd. Flow (prot)          | 1657  | 0     | 0    | 1819  | 1838           | 0     |
| Flt Permitted              | 0.982 |       |      | 0.995 |                |       |
| Satd. Flow (perm)          | 1657  | 0     | 0    | 1819  | 1838           | 0     |
| Link Speed (mph)           | 30    |       |      | 30    | 30             |       |
| Link Distance (ft)         | 904   |       |      | 139   | 1043           |       |
| Travel Time (s)            | 20.5  |       |      | 3.2   | 23.7           |       |
| Peak Hour Factor           | 0.87  | 0.87  | 0.97 | 0.97  | 0.89           | 0.89  |
| Heavy Vehicles (%)         | 2%    | 2%    | 6%   | 2%    | 3%             | 2%    |
| Adj. Flow (vph)            | 31    | 52    | 59   | 585   | 831            | 56    |
| Shared Lane Traffic (%)    |       |       |      |       |                |       |
| Lane Group Flow (vph)      | 83    | 0     | 0    | 644   | 887            | 0     |
| Enter Blocked Intersection | No    | No    | No   | No    | No             | No    |
| Lane Alignment             | Left  | Right | Left | Left  | Left           | Right |
| Median Width(ft)           | 12    |       |      | 0     | 0              |       |
| Link Offset(ft)            | 0     |       |      | 0     | 0              |       |
| Crosswalk Width(ft)        | 16    |       |      | 16    | 16             |       |
| Two way Left Turn Lane     |       |       |      |       |                |       |
| Headway Factor             | 1.01  | 1.01  | 1.02 | 1.02  | 0.99           | 0.99  |
| Turning Speed (mph)        | 15    | 9     | 15   |       |                | 9     |
| Sign Control               | Stop  |       |      | Free  | Free           |       |
| Intersection Summary       |       |       |      |       |                |       |
| Area Type: C               | )ther |       |      |       |                |       |

| 2.7     |                                                                                                            | <u>-</u>                                                              |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBL     | EBR                                                                                                        | NBL                                                                   | NBT                                                                                                                                                                                                                                    | SBT                                                                                                                                                                                                                                                                                          | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 45                                                                                                         | 57                                                                    |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •       |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                            | _                                                                     |                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                            | _                                                                     |                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 31      | 52                                                                                                         | 59                                                                    | 585                                                                                                                                                                                                                                    | 831                                                                                                                                                                                                                                                                                          | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| /linor2 | N                                                                                                          | Maior1                                                                | N                                                                                                                                                                                                                                      | /laior2                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                            |                                                                       | _                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                            | 4.10                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                            | -                                                                     |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                            |                                                                       | -                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                            |                                                                       | -                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | 339                                                                                                        | /4/                                                                   | -                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | -                                                                                                          | -                                                                     | -                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 454     | -                                                                                                          | -                                                                     | -                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                            |                                                                       | -                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 92      | 339                                                                                                        | 747                                                                   | -                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 92      | -                                                                                                          | -                                                                     | -                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 333     | -                                                                                                          | -                                                                     | -                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | -                                                                                                          | _                                                                     | -                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 45.2    |                                                                                                            | 0.9                                                                   |                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ε       |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| nt      | MRI                                                                                                        | MRT                                                                   | RI n1                                                                                                                                                                                                                                  | SRT                                                                                                                                                                                                                                                                                          | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| п       |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        | 301                                                                                                                                                                                                                                                                                          | SDIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |                                                                                                            |                                                                       |                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | 0.079                                                                                                      | -                                                                     | 0.49                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | 10.7                                                                                                       | 0                                                                     | 45.2                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| )       | 10.2                                                                                                       |                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| )<br>1) | B<br>0.3                                                                                                   | A                                                                     | E<br>2.4                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | EBL 27 27 0 Stop - 0 2 87 2 31  Minor2 1562 859 703 6.82 5.82 5.82 3.518 104 377 454 92 92 333 454 EB 45.2 | EBL EBR  27 45 27 45 0 0 Stop Stop - None 0 2 87 87 2 2 31 52  Minor2 | EBL EBR NBL  27 45 57 27 45 57 0 0 0 0 Stop Stop Free - None 0 2 87 87 97 2 2 6 31 52 59  Minor2 Major1  1562 859 887 859 703 6.82 6.42 4.16 5.82 5.82 3.518 3.318 2.254 104 339 747 377 454  92 339 747 92 333 454  EB NB  45.2 0.9 E | EBL EBR NBL NBT  27 45 57 567 27 45 57 567 0 0 0 0 0 Stop Stop Free Free - None 0 None 0 0 2 - 3 87 87 97 97 2 2 6 2 31 52 59 585   Alinor2 Major1 N  1562 859 887 0 859 703 6.82 6.42 4.16 - 5.82 5.82 3.518 3.318 2.254 - 104 339 747 - 377 454 92 339 747 - 92 333 454  EB NB  45.2 0.9 E | EBL         EBR         NBL         NBT         SBT           27         45         57         567         740           27         45         57         567         740           0         0         0         0         0           Stop         Free         Free         Free         Free           None         -         None         -         -           0         -         -         0         0           2         -         -         3         -1           87         87         97         97         89           2         2         6         2         3           31         52         59         585         831           Minor2         Major1         Major2           1562         859         887         0         -           859         -         -         -         -           703         -         -         -         -           5.82         -         -         -         -           5.82         -         -         -         -           454         - |

|                            | _     | ٤     | ×              | /     | 6    | ×     |
|----------------------------|-------|-------|----------------|-------|------|-------|
| Lane Group                 | WBL   | WBR   | NET            | NER   | SWL  | SWT   |
| Lane Configurations        | 14    |       | T <sub>3</sub> |       |      | ર્ન   |
| Traffic Volume (vph)       | 97    | 15    | 48             | 70    | 8    | 38    |
| Future Volume (vph)        | 97    | 15    | 48             | 70    | 8    | 38    |
| Ideal Flow (vphpl)         | 1900  | 1900  | 1900           | 1900  | 1900 | 1900  |
| Grade (%)                  | 3%    |       | -4%            |       |      | 0%    |
| Lane Util. Factor          | 1.00  | 1.00  | 1.00           | 1.00  | 1.00 | 1.00  |
| Frt                        | 0.982 |       | 0.920          |       |      |       |
| Flt Protected              | 0.958 |       |                |       |      | 0.991 |
| Satd. Flow (prot)          | 1702  | 0     | 1708           | 0     | 0    | 1883  |
| Flt Permitted              | 0.958 |       |                |       |      | 0.991 |
| Satd. Flow (perm)          | 1702  | 0     | 1708           | 0     | 0    | 1883  |
| Link Speed (mph)           | 30    |       | 30             |       |      | 30    |
| Link Distance (ft)         | 904   |       | 626            |       |      | 620   |
| Travel Time (s)            | 20.5  |       | 14.2           |       |      | 14.1  |
| Peak Hour Factor           | 0.82  | 0.82  | 0.66           | 0.66  | 0.61 | 0.61  |
| Heavy Vehicles (%)         | 4%    | 0%    | 2%             | 6%    | 0%   | 0%    |
| Adj. Flow (vph)            | 118   | 18    | 73             | 106   | 13   | 62    |
| Shared Lane Traffic (%)    |       |       |                |       |      |       |
| Lane Group Flow (vph)      | 136   | 0     | 179            | 0     | 0    | 75    |
| Enter Blocked Intersection | No    | No    | No             | No    | No   | No    |
| Lane Alignment             | Left  | Right | Left           | Right | Left | Left  |
| Median Width(ft)           | 12    |       | 0              |       |      | 0     |
| Link Offset(ft)            | 0     |       | 0              |       |      | 0     |
| Crosswalk Width(ft)        | 16    |       | 16             |       |      | 16    |
| Two way Left Turn Lane     |       |       |                |       |      |       |
| Headway Factor             | 1.02  | 1.02  | 0.97           | 0.97  | 1.00 | 1.00  |
| Turning Speed (mph)        | 15    | 9     |                | 9     | 15   |       |
| Sign Control               | Stop  |       | Stop           |       |      | Stop  |
| Intersection Summary       |       |       |                |       |      |       |
| Area Type: O               | ther  |       |                |       |      |       |

| Intersection               |      |       |       |       |      |      |
|----------------------------|------|-------|-------|-------|------|------|
| Intersection Delay, s/veh  | 8.2  |       |       |       |      |      |
| Intersection LOS           | Α    |       |       |       |      |      |
|                            |      |       |       |       |      |      |
| Movement                   | WBL  | WBR   | NET   | NER   | SWL  | SWT  |
| Lane Configurations        | N/   |       | 1     |       |      | र्स  |
| Traffic Vol, veh/h         | 97   | 15    | 48    | 70    | 8    | 38   |
| Future Vol, veh/h          | 97   | 15    | 48    | 70    | 8    | 38   |
| Peak Hour Factor           | 0.82 | 0.82  | 0.66  | 0.66  | 0.61 | 0.61 |
| Heavy Vehicles, %          | 4    | 0     | 2     | 6     | 0    | 0    |
| Mvmt Flow                  | 118  | 18    | 73    | 106   | 13   | 62   |
| Number of Lanes            | 1    | 0     | 1     | 0     | 0    | 1    |
| Approach                   | WB   |       | NE    |       | SW   |      |
| Opposing Approach          |      |       | SW    |       | NE   |      |
| Opposing Lanes             | 0    |       | 1     |       | 1    |      |
| Conflicting Approach Left  | NE   |       | •     |       | WB   |      |
| Conflicting Lanes Left     | 1    |       | 0     |       | 1    |      |
| Conflicting Approach Right | SW   |       | WB    |       | •    |      |
| Conflicting Lanes Right    | 1    |       | 1     |       | 0    |      |
| HCM Control Delay          | 8.6  |       | 8     |       | 7.9  |      |
| HCM LOS                    | A    |       | A     |       | Α    |      |
|                            |      |       |       |       |      |      |
| Lane                       |      | NELn1 | WBLn1 | SWLn1 |      |      |
| Vol Left, %                |      | 0%    | 87%   | 17%   |      |      |
| Vol Thru, %                |      | 41%   | 0%    | 83%   |      |      |
| Vol Right, %               |      | 59%   | 13%   | 0%    |      |      |
| Sign Control               |      | Stop  | Stop  | Stop  |      |      |
| Traffic Vol by Lane        |      | 118   | 112   | 46    |      |      |
| LT Vol                     |      | 0     | 97    | 8     |      |      |
| Through Vol                |      | 48    | 0     | 38    |      |      |
| RT Vol                     |      | 70    | 15    | 0     |      |      |
| Lane Flow Rate             |      | 179   | 137   | 75    |      |      |
| Geometry Grp               |      | 1     | 1     | 1     |      |      |
| Degree of Util (X)         |      | 0.198 | 0.175 | 0.093 |      |      |
| Departure Headway (Hd)     |      | 3.995 | 4.601 | 4.446 |      |      |
| Convergence, Y/N           |      | Yes   | Yes   | Yes   |      |      |
| Cap                        |      | 901   | 781   | 808   |      |      |
| Service Time               |      | 2.006 | 2.617 | 2.46  |      |      |
|                            |      |       |       |       |      |      |

HCM Lane V/C Ratio

**HCM Control Delay** 

**HCM Lane LOS** 

HCM 95th-tile Q

0.199

8

Α

0.7

0.175

8.6

Α

0.6

0.093

7.9

Α

|                                   | ۶     | •     | 1    | 1    | ļ     | 1     |
|-----------------------------------|-------|-------|------|------|-------|-------|
| Lane Group                        | EBL   | EBR   | NBL  | NBT  | SBT   | SBR   |
| Lane Configurations               | N/W   |       |      | 4    | f)    |       |
| Traffic Volume (vph)              | 16    | 1     | 2    | 227  | 169   | 7     |
| Future Volume (vph)               | 16    | 1     | 2    | 227  | 169   | 7     |
| Ideal Flow (vphpl)                | 1900  | 1900  | 1900 | 1900 | 1900  | 1900  |
| Grade (%)                         | 9%    |       |      | 6%   | -12%  |       |
| Lane Util. Factor                 | 1.00  | 1.00  | 1.00 | 1.00 | 1.00  | 1.00  |
| Frt                               | 0.995 |       |      |      | 0.995 |       |
| Flt Protected                     | 0.954 |       |      |      |       |       |
| Satd. Flow (prot)                 | 1722  | 0     | 0    | 1807 | 1966  | 0     |
| Flt Permitted                     | 0.954 |       |      |      |       |       |
| Satd. Flow (perm)                 | 1722  | 0     | 0    | 1807 | 1966  | 0     |
| Link Speed (mph)                  | 30    |       |      | 30   | 30    |       |
| Link Distance (ft)                | 572   |       |      | 413  | 453   |       |
| Travel Time (s)                   | 13.0  |       |      | 9.4  | 10.3  |       |
| Peak Hour Factor                  | 0.67  | 0.67  | 0.87 | 0.87 | 0.78  | 0.78  |
| Heavy Vehicles (%)                | 0%    | 0%    | 0%   | 2%   | 2%    | 0%    |
| Adj. Flow (vph)                   | 24    | 1     | 2    | 261  | 217   | 9     |
| Shared Lane Traffic (%)           |       |       |      |      |       |       |
| Lane Group Flow (vph)             | 25    | 0     | 0    | 263  | 226   | 0     |
| <b>Enter Blocked Intersection</b> | n No  | No    | No   | No   | No    | No    |
| Lane Alignment                    | Left  | Right | Left | Left | Left  | Right |
| Median Width(ft)                  | 12    |       |      | 0    | 0     |       |
| Link Offset(ft)                   | 0     |       |      | 0    | 0     |       |
| Crosswalk Width(ft)               | 16    |       |      | 16   | 16    |       |
| Two way Left Turn Lane            |       |       |      |      |       |       |
| Headway Factor                    | 1.06  | 1.06  | 1.04 | 1.04 | 0.93  | 0.93  |
| Turning Speed (mph)               | 15    | 9     | 15   |      |       | 9     |
| Sign Control                      | Stop  |       |      | Stop | Stop  |       |
| Intersection Summary              |       |       |      |      |       |       |
| Area Type:                        | Other |       |      |      |       |       |

| Intersection                 |      |       |         |       |      |      |
|------------------------------|------|-------|---------|-------|------|------|
| Intersection Delay, s/veh    | 8.8  |       |         |       |      |      |
| Intersection LOS             | A    |       |         |       |      |      |
|                              |      |       |         |       |      |      |
| Movement                     | EBL  | EBR   | NBL     | NBT   | SBT  | SBR  |
| Movement Lang Configurations |      | EDK   | INDL    |       |      | SDK  |
| Lane Configurations          | 14   | 1     | 2       | 227   | 140  | 7    |
| Traffic Vol, veh/h           | 16   | 1     | 2       | 227   | 169  | 7    |
| Future Vol, veh/h            | 16   | 1     | 2       | 227   | 169  | 7    |
| Peak Hour Factor             | 0.67 | 0.67  | 0.87    | 0.87  | 0.78 | 0.78 |
| Heavy Vehicles, %            | 0    | 0     | 0       | 2     | 2    | 0    |
| Mvmt Flow                    | 24   | 1     | 2       | 261   | 217  | 9    |
| Number of Lanes              | 1    | 0     | 0       | 1     | 1    | 0    |
| Approach                     | EB   |       | NB      |       | SB   |      |
| Opposing Approach            |      |       | SB      |       | NB   |      |
| Opposing Lanes               | 0    |       | 1       |       | 1    |      |
| Conflicting Approach Left    | SB   |       | EB      |       |      |      |
| Conflicting Lanes Left       | 1    |       | 1       |       | 0    |      |
| Conflicting Approach Right   | NB   |       |         |       | EB   |      |
| Conflicting Lanes Right      | 1    |       | 0       |       | 1    |      |
| HCM Control Delay            | 8.3  |       | 9       |       | 8.7  |      |
| HCM LOS                      | Α    |       | A       |       | Α    |      |
|                              |      |       |         |       |      |      |
| Lane                         |      | NBLn1 | EBLn1   | SBLn1 |      |      |
| Vol Left, %                  |      | 1%    | 94%     | 0%    |      |      |
| Vol Thru, %                  |      | 99%   | 0%      | 96%   |      |      |
| Vol Right, %                 |      | 0%    | 6%      | 4%    |      |      |
| Sign Control                 |      | Stop  | Stop    | Stop  |      |      |
| Traffic Vol by Lane          |      | 229   | 310p    | 176   |      |      |
| LT Vol                       |      | 229   | 16      | 0     |      |      |
| Through Vol                  |      | 227   | 0       | 169   |      |      |
| RT Vol                       |      | 0     | 1       | 7     |      |      |
| Lane Flow Rate               |      | 263   | 25      | 226   |      |      |
|                              |      | 203   | 25<br>1 | 220   |      |      |
| Geometry Grp                 |      |       |         |       |      |      |
| Degree of Util (X)           |      | 0.301 | 0.036   | 0.26  |      |      |
| Departure Headway (Hd)       |      | 4.116 | 5.096   | 4.153 |      |      |
| Convergence, Y/N             |      | Yes   | Yes     | Yes   |      |      |
| Cap                          |      | 863   | 707     | 853   |      |      |
| Service Time                 |      | 2.193 | 3.096   | 2.236 |      |      |
| HCM Lane V/C Ratio           |      | 0.305 | 0.035   | 0.265 |      |      |
| HCM Control Delay            |      | 9     | 8.3     | 8.7   |      |      |

**HCM Lane LOS** 

HCM 95th-tile Q

1.3

|                            | •      | •     | 1     | 1     | 1    | ļ     |
|----------------------------|--------|-------|-------|-------|------|-------|
| Lane Group                 | WBL    | WBR   | NBT   | NBR   | SBL  | SBT   |
| Lane Configurations        | Y      |       | 1     |       |      | र्स   |
| Traffic Volume (vph)       | 6      | 37    | 83    | 11    | 60   | 74    |
| Future Volume (vph)        | 6      | 37    | 83    | 11    | 60   | 74    |
| Ideal Flow (vphpl)         | 1900   | 1900  | 1900  | 1900  | 1900 | 1900  |
| Grade (%)                  | 0%     |       | -1%   |       |      | -2%   |
| Lane Util. Factor          | 1.00   | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  |
| Frt                        | 0.885  |       | 0.984 |       |      |       |
| Flt Protected              | 0.993  |       |       |       |      | 0.978 |
| Satd. Flow (prot)          | 1637   | 0     | 1842  | 0     | 0    | 1840  |
| Flt Permitted              | 0.993  |       |       |       |      | 0.978 |
| Satd. Flow (perm)          | 1637   | 0     | 1842  | 0     | 0    | 1840  |
| Link Speed (mph)           | 30     |       | 30    |       |      | 30    |
| Link Distance (ft)         | 271    |       | 250   |       |      | 586   |
| Travel Time (s)            | 6.2    |       | 5.7   |       |      | 13.3  |
| Peak Hour Factor           | 0.92   | 0.92  | 0.92  | 0.92  | 0.92 | 0.92  |
| Adj. Flow (vph)            | 7      | 40    | 90    | 12    | 65   | 80    |
| Shared Lane Traffic (%)    |        |       |       |       |      |       |
| Lane Group Flow (vph)      | 47     | 0     | 102   | 0     | 0    | 145   |
| Enter Blocked Intersection | No     | No    | No    | No    | No   | No    |
| Lane Alignment             | Left   | Right | Left  | Right | Left | Left  |
| Median Width(ft)           | 12     |       | 0     |       |      | 0     |
| Link Offset(ft)            | 0      |       | 0     |       |      | 0     |
| Crosswalk Width(ft)        | 16     |       | 16    |       |      | 16    |
| Two way Left Turn Lane     |        |       |       |       |      |       |
| Headway Factor             | 1.00   | 1.00  | 0.99  | 0.99  | 0.99 | 0.99  |
| Turning Speed (mph)        | 15     | 9     |       | 9     | 15   |       |
| Sign Control               | Stop   |       | Free  |       |      | Free  |
| Intersection Summary       |        |       |       |       |      |       |
| Araa Tuna.                 | )th or |       |       |       |      |       |

Area Type: Other Control Type: Unsignalized

| Intersection           |           |        |         |        |        |      |
|------------------------|-----------|--------|---------|--------|--------|------|
| Int Delay, s/veh       | 3.1       |        |         |        |        |      |
| Movement               | WBL       | WBR    | NBT     | NBR    | SBL    | SBT  |
| Lane Configurations    | **        |        | 1       |        |        | र्स  |
| Traffic Vol, veh/h     | 6         | 37     | 83      | 11     | 60     | 74   |
| Future Vol, veh/h      | 6         | 37     | 83      | 11     | 60     | 74   |
| Conflicting Peds, #/hr | 0         | 0      | 0       | 0      | 0      | 0    |
| Sign Control           | Stop      | Stop   | Free    | Free   | Free   | Free |
| RT Channelized         | Stop<br>- | None   |         |        | -      |      |
| Storage Length         | 0         | None - | -       |        | _      | None |
|                        |           |        | 0       | -      |        | -    |
| Veh in Median Storage  |           | -      | 0       | -      | -      | 0    |
| Grade, %               | 0         | -      | -1      | -      | -      | -2   |
| Peak Hour Factor       | 92        | 92     | 92      | 92     | 92     | 92   |
| Heavy Vehicles, %      | 2         | 2      | 2       | 2      | 2      | 2    |
| Mvmt Flow              | 7         | 40     | 90      | 12     | 65     | 80   |
|                        |           |        |         |        |        |      |
| Major/Minor M          | linor1    | ١      | /lajor1 | N      | Major2 |      |
| Conflicting Flow All   | 306       | 96     | 0       | 0      | 102    | 0    |
| Stage 1                | 96        | 70     | -       | U      | 102    | -    |
| Stage 2                | 210       | -      |         | -      | -      | -    |
|                        |           |        | -       | -      |        |      |
| Critical Hdwy          | 6.42      | 6.22   | -       | -      | 4.12   | -    |
| Critical Hdwy Stg 1    | 5.42      | -      | -       | -      | -      | -    |
| Critical Hdwy Stg 2    | 5.42      | -      | -       | -      | -      | -    |
|                        | 3.518     |        | -       | -      | 2.218  | -    |
| Pot Cap-1 Maneuver     | 686       | 960    | -       | -      | 1490   | -    |
| Stage 1                | 928       | -      | -       | -      | -      | -    |
| Stage 2                | 825       | -      | -       | -      | -      | -    |
| Platoon blocked, %     |           |        | -       | -      |        | -    |
| Mov Cap-1 Maneuver     | 654       | 960    | -       | -      | 1490   | -    |
| Mov Cap-2 Maneuver     | 654       | -      | -       | -      | -      | -    |
| Stage 1                | 928       | -      | _       | -      | -      | -    |
| Stage 2                | 787       | _      | _       | _      | _      | _    |
| Olugo 2                | , 0,      |        |         |        |        |      |
|                        |           |        |         |        |        |      |
| Approach               | WB        |        | NB      |        | SB     |      |
| HCM Control Delay, s   | 9.2       |        | 0       |        | 3.4    |      |
| HCM LOS                | Α         |        |         |        |        |      |
|                        |           |        |         |        |        |      |
| Minor Long/Major Mym   | .+        | NDT    | MDDM    | /DI n1 | CDI    | CDT  |
| Minor Lane/Major Mvm   | IL        | NBT    | NDRV    | VBLn1  | SBL    | SBT  |
| Capacity (veh/h)       |           | -      | -       |        | 1490   | -    |
| HCM Lane V/C Ratio     |           | -      | -       | 0.052  |        | -    |
| HCM Control Delay (s)  |           | -      | -       | 9.2    | 7.5    | 0    |
| HCM Lane LOS           |           | -      | -       | Α      | Α      | Α    |
| HCM 95th %tile Q(veh   | )         | -      | -       | 0.2    | 0.1    | -    |
|                        |           |        |         |        |        |      |

|                            | ١          | •              | 1     | 1     | Ţ         | 1     |
|----------------------------|------------|----------------|-------|-------|-----------|-------|
| Lane Group                 | EBL        | EBR            | NBL   | NBT   | SBT       | SBR   |
| Lane Configurations        | M          |                |       | 4     | ĵ.        |       |
| Traffic Volume (vph)       | 22         | 30             | 32    | 567   | 740       | 42    |
| Future Volume (vph)        | 22         | 30             | 32    | 567   | 740       | 42    |
| Ideal Flow (vphpl)         | 1900       | 1900           | 1900  | 1900  | 1900      | 1900  |
| Grade (%)                  | 2%         |                |       | 3%    | -1%       |       |
| Lane Util. Factor          | 1.00       | 1.00           | 1.00  | 1.00  | 1.00      | 1.00  |
| Frt                        | 0.922      |                |       |       | 0.993     |       |
| Flt Protected              | 0.979      |                |       | 0.997 |           |       |
| Satd. Flow (prot)          | 1665       | 0              | 0     | 1825  | 1842      | 0     |
| Flt Permitted              | 0.979      |                |       | 0.939 |           |       |
| Satd. Flow (perm)          | 1665       | 0              | 0     | 1719  | 1842      | 0     |
| Right Turn on Red          |            | Yes            |       |       |           | Yes   |
| Satd. Flow (RTOR)          | 34         |                |       |       | 5         |       |
| Link Speed (mph)           | 30         |                |       | 30    | 30        |       |
| Link Distance (ft)         | 904        |                |       | 139   | 1043      |       |
| Travel Time (s)            | 20.5       |                |       | 3.2   | 23.7      |       |
| Peak Hour Factor           | 0.87       | 0.87           | 0.97  | 0.97  | 0.89      | 0.89  |
| Heavy Vehicles (%)         | 2%         | 2%             | 6%    | 2%    | 3%        | 2%    |
| Adj. Flow (vph)            | 25         | 34             | 33    | 585   | 831       | 47    |
| Shared Lane Traffic (%)    | 20         | J <del>4</del> | აა    | 505   | 031       | 4/    |
| Lane Group Flow (vph)      | 59         | 0              | 0     | 618   | 878       | 0     |
| Enter Blocked Intersection | No         | No             | No    | No    | 878<br>No | No    |
|                            |            |                | Left  | Left  |           |       |
| Lane Alignment             | Left<br>12 | Right          | Leit  |       | Left      | Right |
| Median Width(ft)           |            |                |       | 0     | 0         |       |
| Link Offset(ft)            | 0          |                |       | 14    | 0<br>16   |       |
| Crosswalk Width(ft)        | 16         |                |       | 16    | 16        |       |
| Two way Left Turn Lane     | 1.01       | 1 01           | 1.00  | 1.00  | 0.00      | 0.00  |
| Headway Factor             | 1.01       | 1.01           | 1.02  | 1.02  | 0.99      | 0.99  |
| Turning Speed (mph)        | 15         | 9              | 15    | 1     | - 4       | 9     |
| Number of Detectors        | 1          |                | 1     | 1     | 1         |       |
| Detector Template          |            |                | Left  |       | ,         |       |
| Leading Detector (ft)      | 40         |                | 20    | 6     | 6         |       |
| Trailing Detector (ft)     | 0          |                | 0     | 0     | 0         |       |
| Detector 1 Position(ft)    | 0          |                | 0     | 0     | 0         |       |
| Detector 1 Size(ft)        | 40         |                | 20    | 6     | 6         |       |
| Detector 1 Type            | CI+Ex      |                | CI+Ex | CI+Ex | CI+Ex     |       |
| Detector 1 Channel         |            |                |       |       |           |       |
| Detector 1 Extend (s)      | 0.0        |                | 0.0   | 0.0   | 0.0       |       |
| Detector 1 Queue (s)       | 0.0        |                | 0.0   | 0.0   | 0.0       |       |
| Detector 1 Delay (s)       | 0.0        |                | 0.0   | 0.0   | 0.0       |       |
| Turn Type                  | Prot       |                | Perm  | NA    | NA        |       |
| Protected Phases           | 7          |                |       | 2     | 6         |       |
| Permitted Phases           |            |                | 2     |       |           |       |
| Detector Phase             | 7          |                | 2     | 2     | 6         |       |
| Switch Phase               |            |                |       |       |           |       |
| Minimum Initial (s)        | 6.0        |                | 10.0  | 10.0  | 10.0      |       |
| Minimum Split (s)          | 11.0       |                | 15.0  | 15.0  | 15.0      |       |
| Total Split (s)            | 35.0       |                | 45.0  | 45.0  | 45.0      |       |
| Total Split (%)            | 43.8%      |                | 56.3% | 56.3% | 56.3%     |       |
| Maximum Green (s)          | 30.0       |                | 40.0  | 40.0  | 40.0      |       |
| Yellow Time (s)            | 4.0        |                | 4.0   | 4.0   | 4.0       |       |
| All-Red Time (s)           | 1.0        |                | 1.0   | 1.0   | 1.0       |       |
| Lost Time Adjust (s)       | 0.0        |                | 1.0   | 0.0   | 0.0       |       |
| EUSE TIME Aujust (3)       | 0.0        |                |       | 0.0   | 0.0       |       |

Synchro 11 Report Page 1

Job# 16003191A - R.H.

|                         | ۶    | •   | 1   | 1    | ļ    | 1   |
|-------------------------|------|-----|-----|------|------|-----|
| Lane Group              | EBL  | EBR | NBL | NBT  | SBT  | SBR |
| Total Lost Time (s)     | 5.0  |     |     | 5.0  | 5.0  |     |
| Lead/Lag                |      |     |     |      |      |     |
| Lead-Lag Optimize?      |      |     |     |      |      |     |
| Vehicle Extension (s)   | 2.0  |     | 2.0 | 2.0  | 2.0  |     |
| Recall Mode             | None |     | Max | Max  | Max  |     |
| v/c Ratio               | 0.28 |     |     | 0.44 | 0.58 |     |
| Control Delay           | 16.7 |     |     | 4.2  | 5.6  |     |
| Queue Delay             | 0.0  |     |     | 0.0  | 0.0  |     |
| Total Delay             | 16.7 |     |     | 4.2  | 5.6  |     |
| Queue Length 50th (ft)  | 8    |     |     | 67   | 116  |     |
| Queue Length 95th (ft)  | 34   |     |     | 135  | 232  |     |
| Internal Link Dist (ft) | 824  |     |     | 59   | 963  |     |
| Turn Bay Length (ft)    |      |     |     |      |      |     |
| Base Capacity (vph)     | 878  |     |     | 1416 | 1519 |     |
| Starvation Cap Reductn  | 0    |     |     | 0    | 0    |     |
| Spillback Cap Reductn   | 0    |     |     | 0    | 0    |     |
| Storage Cap Reductn     | 0    |     |     | 0    | 0    |     |
| Reduced v/c Ratio       | 0.07 |     |     | 0.44 | 0.58 |     |
| Intersection Summary    |      |     |     |      |      |     |

#### **Intersection Summary**

Area Type: Other

Cycle Length: 80 Actuated Cycle Length: 58 Natural Cycle: 45

Control Type: Semi Act-Uncoord

Splits and Phases: 2: NYS Route 9D & Clinton Street



|                             | ۶    | 7    | 4    | 1    | <b>↓</b> | 1         |
|-----------------------------|------|------|------|------|----------|-----------|
| Movement                    | EBL  | EBR  | NBL  | NBT  | SBT      | SBR       |
| Lane Configurations         | **   |      |      | 4    | <b>1</b> | - J J I I |
| Traffic Volume (veh/h)      | 22   | 30   | 32   | 567  | 740      | 42        |
| Future Volume (veh/h)       | 22   | 30   | 32   | 567  | 740      | 42        |
| Initial Q (Qb), veh         | 0    | 0    | 0    | 0    | 0        | 0         |
| Ped-Bike Adj(A_pbT)         | 1.00 | 1.00 | 1.00 | U    | U        | 1.00      |
| Parking Bus, Adj            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00      |
| Work Zone On Approach       | No   | 1.00 | 1.00 | No   | No       | 1.00      |
|                             |      | 1047 | 1750 |      |          | 1909      |
| Adj Sat Flow, veh/h/ln      | 1847 | 1847 | 1758 | 1817 | 1894     |           |
| Adj Flow Rate, veh/h        | 25   | 34   | 33   | 585  | 831      | 47        |
| Peak Hour Factor            | 0.87 | 0.87 | 0.97 | 0.97 | 0.89     | 0.89      |
| Percent Heavy Veh, %        | 2    | 2    | 6    | 2    | 3        | 2         |
| Cap, veh/h                  | 45   | 62   | 102  | 1266 | 1327     | 75        |
| Arrive On Green             | 0.07 | 0.07 | 0.75 | 0.75 | 0.75     | 0.75      |
| Sat Flow, veh/h             | 685  | 932  | 42   | 1694 | 1776     | 100       |
| Grp Volume(v), veh/h        | 60   | 0    | 618  | 0    | 0        | 878       |
| Grp Sat Flow(s), veh/h/ln   | 1645 | 0    | 1736 | 0    | 0        | 1876      |
| Q Serve(g_s), s             | 1.9  | 0.0  | 0.0  | 0.0  | 0.0      | 11.9      |
| Cycle Q Clear(g_c), s       | 1.9  | 0.0  | 7.0  | 0.0  | 0.0      | 11.9      |
| Prop In Lane                | 0.42 | 0.57 | 0.05 | 0.0  | 0.0      | 0.05      |
| Lane Grp Cap(c), veh/h      | 109  | 0.57 | 1368 | 0    | 0        | 1402      |
| V/C Ratio(X)                | 0.55 | 0.00 | 0.45 | 0.00 | 0.00     | 0.63      |
| Avail Cap(c_a), veh/h       | 922  | 0.00 | 1368 | 0.00 | 0.00     | 1402      |
| HCM Platoon Ratio           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00      |
|                             |      |      |      |      |          |           |
| Upstream Filter(I)          | 1.00 | 0.00 | 1.00 | 0.00 | 0.00     | 1.00      |
| Uniform Delay (d), s/veh    | 24.2 | 0.0  | 2.6  | 0.0  | 0.0      | 3.2       |
| Incr Delay (d2), s/veh      | 1.6  | 0.0  | 1.1  | 0.0  | 0.0      | 2.1       |
| Initial Q Delay(d3),s/veh   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0       |
| %ile BackOfQ(50%),veh/ln    | 0.7  | 0.0  | 1.2  | 0.0  | 0.0      | 2.3       |
| Unsig. Movement Delay, s/ve |      |      |      |      |          |           |
| LnGrp Delay(d),s/veh        | 25.8 | 0.0  | 3.7  | 0.0  | 0.0      | 5.3       |
| LnGrp LOS                   | С    | Α    | Α    | Α    | Α        | Α         |
| Approach Vol, veh/h         | 60   |      |      | 618  | 878      |           |
| Approach Delay, s/veh       | 25.8 |      |      | 3.7  | 5.3      |           |
| Approach LOS                | C    |      |      | Α.   | A        |           |
|                             |      |      |      |      | ,,       |           |
| Timer - Assigned Phs        |      | 2    |      | 4    |          | 6         |
| Phs Duration (G+Y+Rc), s    |      | 45.0 |      | 8.5  |          | 45.0      |
| Change Period (Y+Rc), s     |      | 5.0  |      | 5.0  |          | 5.0       |
| Max Green Setting (Gmax), s | S    | 40.0 |      | 30.0 |          | 40.0      |
| Max Q Clear Time (g_c+l1),  |      | 9.0  |      | 3.9  |          | 13.9      |
| Green Ext Time (p_c), s     |      | 0.8  |      | 0.1  |          | 1.1       |
| Intersection Summary        |      |      |      |      |          |           |
| HCM 6th Ctrl Delay          |      |      | 5.5  |      |          |           |
| HCM 6th LOS                 |      |      |      |      |          |           |
|                             |      |      | Α    |      |          |           |
| Notes                       |      |      |      |      |          |           |

User approved volume balancing among the lanes for turning movement.

Synchro 11 Report Page 1

|                         | •    | *   | 1   | 1    | <b>↓</b> | 4   |
|-------------------------|------|-----|-----|------|----------|-----|
| Lane Group              | EBL  | EBR | NBL | NBT  | SBT      | SBR |
| Total Lost Time (s)     | 5.0  |     |     | 5.0  | 5.0      |     |
| Lead/Lag                |      |     |     |      |          |     |
| Lead-Lag Optimize?      |      |     |     |      |          |     |
| Vehicle Extension (s)   | 2.0  |     | 2.0 | 2.0  | 2.0      |     |
| Recall Mode             | None |     | Max | Max  | Max      |     |
| v/c Ratio               | 0.35 |     |     | 0.52 | 0.63     |     |
| Control Delay           | 16.3 |     |     | 5.8  | 7.0      |     |
| Queue Delay             | 0.0  |     |     | 0.0  | 0.0      |     |
| Total Delay             | 16.3 |     |     | 5.8  | 7.0      |     |
| Queue Length 50th (ft)  | 10   |     |     | 75   | 119      |     |
| Queue Length 95th (ft)  | 41   |     |     | 164  | 250      |     |
| Internal Link Dist (ft) | 824  |     |     | 59   | 963      |     |
| Turn Bay Length (ft)    |      |     |     |      |          |     |
| Base Capacity (vph)     | 883  |     |     | 1232 | 1411     |     |
| Starvation Cap Reductn  | 0    |     |     | 0    | 0        |     |
| Spillback Cap Reductn   | 0    |     |     | 0    | 0        |     |
| Storage Cap Reductn     | 0    |     |     | 0    | 0        |     |
| Reduced v/c Ratio       | 0.09 |     |     | 0.52 | 0.63     |     |
| Intersection Summary    |      |     |     |      |          |     |

,

Area Type: Other


Cycle Length: 80

Actuated Cycle Length: 57.9

Natural Cycle: 50

Control Type: Semi Act-Uncoord

Splits and Phases: 2: NYS Route 9D & Clinton Street



|                             | ۶          | •    | 4    | 1    | Ţ    | 1    |
|-----------------------------|------------|------|------|------|------|------|
| Movement                    | EBL        | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations         | Y          |      |      | र्स  | 1    |      |
| Traffic Volume (veh/h)      | 27         | 45   | 57   | 567  | 740  | 50   |
| Future Volume (veh/h)       | 27         | 45   | 57   | 567  | 740  | 50   |
| Initial Q (Qb), veh         | 0          | 0    | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)         | 1.00       | 1.00 | 1.00 |      |      | 1.00 |
| Parking Bus, Adj            | 1.00       | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach       | No         |      |      | No   | No   |      |
| Adj Sat Flow, veh/h/ln      | 1847       | 1847 | 1758 | 1817 | 1894 | 1909 |
| Adj Flow Rate, veh/h        | 31         | 52   | 59   | 585  | 831  | 56   |
| Peak Hour Factor            | 0.87       | 0.87 | 0.97 | 0.97 | 0.89 | 0.89 |
| Percent Heavy Veh, %        | 2          | 2    | 6    | 2    | 3    | 2    |
| Cap, veh/h                  | 48         | 80   | 135  | 1153 | 1292 | 87   |
| Arrive On Green             | 0.08       | 0.08 | 0.74 | 0.74 | 0.74 | 0.74 |
| Sat Flow, veh/h             | 603        | 1012 | 85   | 1565 | 1755 | 118  |
|                             |            |      |      |      |      |      |
| Grp Volume(v), veh/h        | 84<br>142E | 0    | 644  | 0    | 0    | 887  |
| Grp Sat Flow(s), veh/h/ln   | 1635       | 0    | 1649 | 0    | 0    | 1873 |
| Q Serve(g_s), s             | 2.7        | 0.0  | 0.0  | 0.0  | 0.0  | 12.9 |
| Cycle Q Clear(g_c), s       | 2.7        | 0.0  | 7.9  | 0.0  | 0.0  | 12.9 |
| Prop In Lane                | 0.37       | 0.62 | 0.09 |      |      | 0.06 |
| Lane Grp Cap(c), veh/h      | 130        | 0    | 1287 | 0    | 0    | 1379 |
| V/C Ratio(X)                | 0.65       | 0.00 | 0.50 | 0.00 | 0.00 | 0.64 |
| Avail Cap(c_a), veh/h       | 903        | 0    | 1287 | 0    | 0    | 1379 |
| HCM Platoon Ratio           | 1.00       | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)          | 1.00       | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh    | 24.3       | 0.0  | 2.9  | 0.0  | 0.0  | 3.6  |
| Incr Delay (d2), s/veh      | 2.0        | 0.0  | 1.4  | 0.0  | 0.0  | 2.3  |
| Initial Q Delay(d3),s/veh   | 0.0        | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/ln    | 1.0        | 0.0  | 1.6  | 0.0  | 0.0  | 2.7  |
| Unsig. Movement Delay, s/ve | eh         |      |      |      |      |      |
| LnGrp Delay(d),s/veh        | 26.3       | 0.0  | 4.3  | 0.0  | 0.0  | 5.9  |
| LnGrp LOS                   | С          | Α    | Α    | Α    | Α    | Α    |
| Approach Vol, veh/h         | 84         |      |      | 644  | 887  |      |
| Approach Delay, s/veh       | 26.3       |      |      | 4.3  | 5.9  |      |
| Approach LOS                | C          |      |      | A    | A    |      |
|                             |            | -    |      |      |      |      |
| Timer - Assigned Phs        |            | 2    |      | 4    |      | 6    |
| Phs Duration (G+Y+Rc), s    |            | 45.0 |      | 9.3  |      | 45.0 |
| Change Period (Y+Rc), s     |            | 5.0  |      | 5.0  |      | 5.0  |
| Max Green Setting (Gmax),   |            | 40.0 |      | 30.0 |      | 40.0 |
| Max Q Clear Time (g_c+I1),  | S          | 9.9  |      | 4.7  |      | 14.9 |
| Green Ext Time (p_c), s     |            | 1.0  |      | 0.1  |      | 1.1  |
| Intersection Summary        |            |      |      |      |      |      |
| HCM 6th Ctrl Delay          |            |      | 6.3  |      |      |      |
| HCM 6th LOS                 |            |      | Α    |      |      |      |
|                             |            |      | ^    |      |      |      |
| Notes                       |            |      |      |      |      |      |

User approved volume balancing among the lanes for turning movement.



# Traffic Impact Study **Appendix E | Parking Data**



### TABLE P-1 SUMMARY OF PARKING RATIOS FOR MULTI-FAMILY DEVELOPMENTS BASED ON ITE PARKING GENERATION 5TH EDITION

|                           | COMPUTED PARKING RATIO | ITE PEAK<br>PARKING DEMAND <sup>2</sup> | ITE PEAK PARKING DEMAND ADJUSTED FOR MASS TRANSIT <sup>2</sup> |
|---------------------------|------------------------|-----------------------------------------|----------------------------------------------------------------|
| 188 DWELLING UNIT         | S <sup>1</sup>         |                                         |                                                                |
| WEEKDAY                   | 1.21                   | 227                                     | 201                                                            |
| SATURDAY                  | 1.31                   | 246                                     | -                                                              |
| 283 BEDROOMS <sup>1</sup> |                        |                                         |                                                                |
| WEEKDAY                   | 0.66                   | 187                                     | 164                                                            |
| SATURDAY                  | 0.82                   | 232                                     | -                                                              |

#### **NOTES:**

- 1) NUMBER OF DWELLING UNITS & BEDROOMS BASED ON SITE PLAN PREPARED BY INSITE ENGINEERING.
- 2) BASED ON ITE PARKING GENERATION 5TH EDITION PARKING DEMAND DATA FOR LAND USE 220 MULTIFAMILY HOUSING (LOW-RISE). NOTE SATURDAY PARKING DEMAND DATA FOR NEARBY MASS-TRANSIT IS NOT PROVIDED.



## Attachment P-1 | Village Code Off-Street Parking Requirements

#### § 151-24. Parking and loading requirements.

A. Intent. This article establishes requirements for parking and loading for new construction and for the expansion or change to existing uses. The purpose of this article is to ensure that structures and land uses have an adequate level of parking to avoid congestion on surrounding streets while avoiding excessive on-site parking.

#### B. Applicability.

- (1) Parking and loading requirements shall apply to all zoning districts.
- (2) All structures and land uses hereafter erected, enlarged, created, changed, or extended shall be provided with the amount of parking space(s) and loading and unloading space(s) to meet the needs of persons making use of such structures or land.
- C. Front yard parking. Parking is prohibited in the front yard in any district for all existing structures and uses or structures and uses as they may be changed under this code.
- D. Parking evaluation process.
  - (1) Required parking facilities shall be completed before a certificate of occupancy shall be issued.
  - (2) The building department and the Planning Board shall make a determination of the required number of parking spaces and the size and location of loading and unloading zones based on the Parking Table<sup>1</sup> and parking criteria below.
  - (3) The Planning Board shall have the authority during site plan and special permit review to regulate the number of spaces and alter the size and location of loading zones required by the building department.

#### E. Parking criteria.

- (1) The proposed parking shall not result in any adverse impacts on the subject site or within the district.
- (2) On-site parking shall be balanced against lot size, dimensional limitations and topography.
- (3) Parking should be located on the same lot as the use it is intended to serve if practicable.
- (4) On-street parking spaces may be used as an alternative to on-site parking where availability can be demonstrated.
- (5) The availability of public parking within a reasonable distance from use.

<sup>1.</sup> Editor's Note: Table 5, Parking Table is included as an attachment to this chapter.

§ 151-24

- (6) The availability of off site private parking.
- (7) The availability of shared parking.
- F. Shared parking requirements. Shared parking is allowed either on the same, adjacent or nearby parcels, provided that:
  - (1) There is a covenant on the separate parcel or lot guaranteeing the maintenance of the required off-street parking facilities during the existence of any of the principal uses having beneficial use of the shared parking. Said covenant shall:
    - (a) Be executed by the owner of said lot or parcel of land and the parties having beneficial use thereof;
    - (b) Be enforceable by any one or all of the parties having beneficial use thereof; and
    - (c) Be enforceable against the owner, the parties having beneficial use, and their heirs, successors and assigns.
- G. Land dedication. An applicant for a building permit may offer to grant and convey to the Village appropriately located and developed land for parking. If the Planning Board finds that the proposed land is appropriate for parking, the Board of Trustees, at its discretion, may accept such land.

### H. Screening.

- (1) Off-street parking areas for all nonresidential uses and apartment buildings located within 50 feet of the VM, VR, or R Districts or a single-family or a multifamily dwelling shall be shielded by wall, fencing or other suitable material which shall serve to screen noise and uncontrolled entrance. [Amended 9-30-2015 by L.L. No. 3-2015]
- (2) Parking lots shall be screened from all street or rights-of-way in such a manner as to facilitate adequate sight distance at points of egress.
- I. Parking lot landscaping requirements.
  - (1) Buffer planting shall be installed between the parking lot and adjacent properties.
  - (2) Buffer planting shall be installed between the parking lot and the street.
  - (3) If existing trees and vegetation are left on the site, these may be used in lieu of new plantings.
  - (4) Consideration should be given to green infrastructure techniques such as bioretention areas.
- J. Parking lots with more than 40 cars shall be designed in accordance with the following:

§ 151-24

(1) One tree planted on the perimeter of the parking lot for every 10 cars or fraction thereof.

- (2) One tree planted in the interior of a parking lot (on traffic islands) for every 10 cars or fraction thereof.
- (3) Internal traffic islands, including one for every 20 cars or part thereof to reduce the impact of the parking area and provide safety for vehicles moving within the area.
- (4) Consideration should be given to green infrastructure techniques, such as bioretention areas.

#### K. New plantings shall comply with the following sizes:

- (1) Major tree: 3 1/2 inches in caliper.
- (2) Flowering tree: 2 1/2 inches in caliper.
- (3) Evergreen tree: four to six feet in height.
- (4) Shrub: two to three feet in height or spread.

#### L. Parking space size.

- (1) Perpendicular parking (90°).
  - (a) Each parking space shall be nine feet by 18 feet.
  - (b) The minimum aisle width shall be 24 feet for two-way traffic.
  - (c) The minimum aisle width shall be 22 feet for one-way traffic.
- (2) Angled parking (60°).
  - (a) Each parking space shall be nine feet by 22 feet.
  - (b) The minimum aisle width shall be 23 feet for two-way traffic.
  - (c) The minimum aisle width shall be 15 feet for one-way traffic.

#### M. Stacked parking restrictions.

- (1) Except as otherwise provided herein, parking facilities shall be designed so that each motor vehicle may proceed to and from the parking space provided for it without the moving of any other motor vehicle.
- (2) Stacked or valet parking may be allowed at the discretion of the Planning Board if an attendant is present to move vehicles. If stacked parking is used for required parking spaces, a written guarantee must be filed with the Village ensuring that an attendant will always be present when the lot is in operation. The requirements for minimum or maximum spaces continue to apply for stacked parking.

§ 151-24

(3) Tandem parking is allowed for single-family detached dwelling units.

### N. Loading areas.

- (1) Off-street loading facilities shall be provided for each commercial or industrial use unless it is demonstrated that the use does not require a dedicated loading area.
- (2) Off-street loading facilities shall be so arranged as not to interfere with pedestrian or motor traffic on the public street or highway.
- (3) Any required off-street loading berth shall have a clear area not less than 12 feet in width by 25 feet in length.

Numbers Listed in Parking Table are Considered a Minimum

| a. RESIDENTIAL                           | RMU               | R                 | VR                | VM                                           | VC                | CMU               |
|------------------------------------------|-------------------|-------------------|-------------------|----------------------------------------------|-------------------|-------------------|
| Dwelling, One Family                     | 2 per unit        | 3 per unit        | 4 per unit        | 5 per unit                                   | NA                | NA                |
| Dwelling, Two Family                     | 1 per unit        | NA                | 1 per unit        | 1 per unit                                   | 1 per unit        | 1 per unit        |
| Dwelling, Multi Family                   | 1 per unit        | NA                | 1 per unit        | 1 per unit                                   | 1 per unit        | 1 per unit        |
| Dwelling, Supported Living               | 1 per unit        | 1 per unit        | 1 per unit        | 1 per unit                                   | 1 per unit        | 1 per unit        |
| Dwelling, Street Level                   | 1 per unit        | 1 per unit        | 1 per unit        | 1 per unit                                   | NA                | NA                |
| Dwelling, Accessory                      | 1 per unit        | 1 per unit        | 1 per unit        | 1 per unit                                   | 1 per unit        | 1 per unit        |
| Home Occupation 1                        | None              | None              | None              | None                                         | None              | None              |
| Home Occupation 2                        | 1 per<br>employee | 1 per<br>employee | 1 per<br>employee | 1 per<br>employee                            | 1 per<br>employee | 1 per<br>employee |
| Manufactured Home/Manufactured Home Park | NA                | NA                | 1 per unit        | NA                                           | NA                | NA                |
|                                          |                   |                   |                   |                                              |                   |                   |
|                                          |                   |                   |                   |                                              |                   |                   |
| b. LODGING                               |                   |                   |                   |                                              |                   |                   |
| Hotel (no room limit)                    | 1 per room        | NA                | NA                | NA                                           | 1 per room        | 1 per room        |
| Inn (up to 12 rooms)                     | Per SPR           | NA NA             | Per SPR           | Per SPR                                      | Per SPR           | Per SPR           |
| Bed & Breakfast (up to 5 rooms)          | Per SPR           | Per SPR           | Per SPR           | Per SPR                                      | Per SPR           | Per SPR           |
|                                          |                   |                   |                   |                                              |                   |                   |
|                                          |                   |                   |                   |                                              |                   |                   |
| c. COMMERCIAL                            |                   |                   |                   |                                              |                   |                   |
| Amusement Centers/Arcades                | NA                | NA                | NA                | NA                                           | NA                | Per SPR           |
| Amusement Facility, Accessory            | NA                | NA                | NA                | NA                                           | NA                | Per SPR           |
| Conference Center                        | 1 per 400 gfa     | NA                | NA                | NA                                           | 1 per 400 gfa     | 1 per 400<br>gfa  |
| Daycare Center                           | None              | NA                | NA                | NA                                           | None              | None              |
| Fitness Center                           | 1 per 400 gfa     | NA                | 1 per 400 gfa     | NA                                           | 1 per 400 gfa     | 1 per 400<br>gfa  |
| Funeral Home                             | NA                | NA                | 1 per 4 seats     | NA                                           | Per SPR           | Per SPR           |
| Indoor Recreation                        | Per SPR           | NA                | NA                | NA                                           | Per SPR           | Per SPR           |
| Marina                                   | NA                | NA                | NA                | NA                                           | Per SPR           | Per SPR           |
| Medical Clinic                           | NA                | NA                | NA                | NA                                           | 1 per 500 gfa     | Per SPR           |
| Office, Business                         | Х                 | NA                | NA                | Per SPR                                      | Per SPR           | Per SPR           |
| Office, Medical                          | Х                 | NA                | 1 per 500 gfa     | Per SPR                                      | Per SPR           | Per SPR           |
| Office, Professional 2                   | X                 | NA                | 1 per 500 gfa     | Per SPR                                      | Per SPR           | Per SPR           |
| Outdoor Recreation                       | Per SPR           | NA                | Per SPR           | NA                                           | NA                | Per SPR           |
| Restaurant                               | NA                | NA                | 1 per 400 gfa     | Per SPR                                      | None              | Per SPR           |
| Retail                                   | NA                | NA                | 1 per 400 gfa     | Per SPR                                      | None              | Per SPR           |
| Shopping Center                          | NA                | NA                | NA                | NA                                           | NA                | Per SPR           |
| Theater                                  | NA                | NA                | NA                | NA<br>1 ···································· | None              | Per SPR           |
| Tavern                                   | NA                | NA                | NA                | 1 per 400<br>gfa                             | None              | Per SPR           |

- 1. NA = Not Applicable as use is not allowed
- 2. Per SPR = As determined by Site Plan Review
- 3. gfa = Gross Floor Area
- 4. None = no parking required

| d. OTHER: AGRICULTURE        | RMU        | R          | VR            | VM               | VC               | CMU        |
|------------------------------|------------|------------|---------------|------------------|------------------|------------|
|                              |            |            |               |                  |                  |            |
| Animal Hospital              | NA         | NA         | NA            | NA               | Per SPR          | Per SPR    |
| Kennel                       | NA         | NA         | NA            | NA               | NA               | Per SPR    |
| Garden Nursery               | NA         | NA         | NA            | Per SPR          | Per SPR          | Per SPR    |
|                              |            |            |               |                  |                  |            |
| e. AUTOMOTIVE                |            |            | l .           |                  |                  |            |
| Towing/Automobile Service    | NA         | NA         | NA            | NA               | NA               | Per SPR    |
| Car Wash                     | NA         | NA         | NA            | NA               | NA               | Per SPR    |
| Drive-Through Facility       | NA         | NA         | NA            | NA               | NA               | Per SPR    |
| Gasoline/Convenience Station | NA         | NA         | NA            | NA               | NA               | Per SPR    |
| Auto Sales                   | NA         | NA         | NA            | NA               | NA               | Per SPR    |
|                              |            |            |               |                  |                  |            |
|                              |            |            |               |                  |                  |            |
|                              |            |            |               |                  |                  |            |
|                              |            |            |               |                  |                  |            |
| f. MUNICIPAL/CIVIC           |            |            |               |                  |                  |            |
| Club or Lodge                | NA         | NA         | NA            | 1 per 500<br>gfa | Per SPR          | Per SPR    |
| Education Facility           | NA         | NA         | NA            | NA               | Per SPR          | Per SPR    |
| Hospital                     | NA         | NA         | NA            | NA               | 1 per 400<br>gfa | Per SPR    |
| Library                      | NA         | NA         | NA            | NA               | 1 per 400<br>gfa | Per SPR    |
| Museum                       | NA         | NA         | NA            | 1 per 400<br>gfa | Per SPR          | Per SPR    |
| Parking Structure            | NA         | NA         | NA            | NA               | NA               | NA         |
| Religious Assembly           | NA         | NA         | 1 per 400 gfa | 1 per 400<br>gfa | 1 per 400<br>gfa | Per SPR    |
|                              | 1 per 1000 | 1 per 1000 | 1 per 1000    | 1 per            | 1 per            | 1 per 1000 |
| Municipal/Institutional      | gfa        | gfa        | gfa           | 1000 gfa         | 1000 gfa         | gfa        |
| Marineipairiistitationar     |            |            |               |                  |                  |            |
|                              |            |            |               |                  |                  |            |
| g. INDUSTRIAL                |            | <u> </u>   |               |                  | <u> </u>         |            |
| Laboratory                   | NA         | NA         | NA            | NA               | NA               | Per SPR    |
| Light Industrial Facility    | NA         | NA         | NA            | NA               | NA               | Per SPR    |
| Heavy Equipment Facility     | NA         | NA         | NA            | NA               | NA               | Per SPR    |
| Technology/Research Facility | NA         | NA         | NA            | NA               | Per SPR          | Per SPR    |
| Utility Distribution         | NA         | NA         | NA            | NA               | NA               | Per SPR    |
| Wholesale Distribution       | NA         | NA         | NA            | NA               | NA               | Per SPR    |
|                              |            |            |               |                  |                  |            |

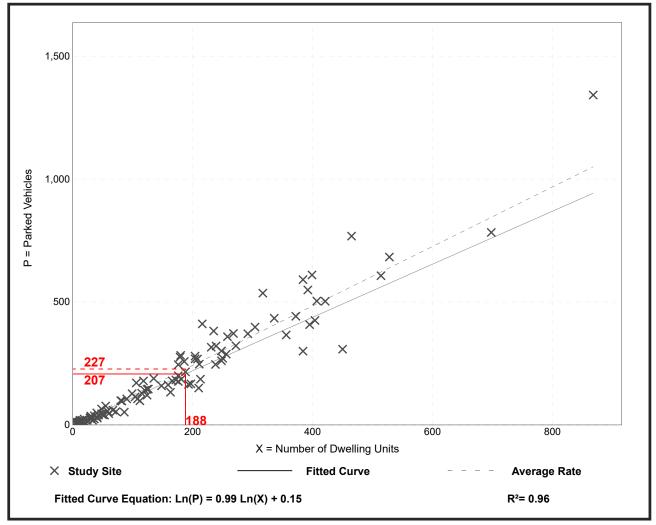


## Attachment P-2 | ITE Parking Data

Peak Period Parking Demand vs: Dwelling Units

On a: Weekday (Monday - Friday)

Setting/Location: General Urban/Suburban (no nearby rail transit)


Peak Period of Parking Demand: 11:00 p.m. - 6:00 a.m.

Number of Studies: 119 Avg. Num. of Dwelling Units: 156

#### **Peak Period Parking Demand per Dwelling Unit**

| Average Rate | Range of Rates | 33rd / 85th<br>Percentile |             |            |
|--------------|----------------|---------------------------|-------------|------------|
| 1.21         | 0.58 - 2.50    | 1.03 / 1.52               | 1.16 - 1.26 | 0.27 (22%) |

#### **Data Plot and Equation**

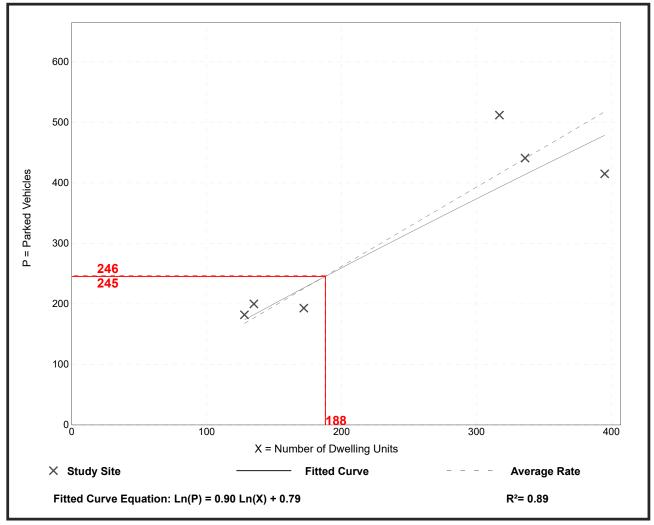


Parking Generation Manual, 5th Edition • Institute of Transportation Engineers

(220)

Peak Period Parking Demand vs: Dwelling Units

On a: Saturday


Setting/Location: General Urban/Suburban (no nearby rail transit)

Peak Period of Parking Demand: 11:00 p.m. - 7:00 a.m.

Number of Studies: 6
Avg. Num. of Dwelling Units: 247

#### **Peak Period Parking Demand per Dwelling Unit**

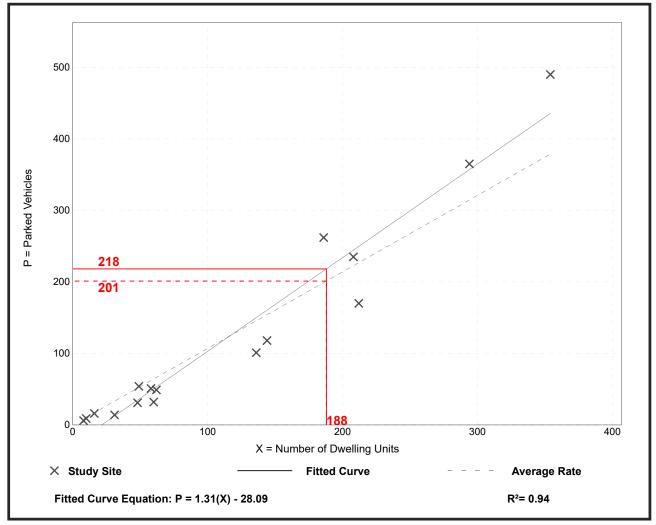
| Average Rate | Range of Rates | 33rd / 85th<br>Percentile | 95% Confidence<br>Interval | Standard Deviation (Coeff. of Variation) |
|--------------|----------------|---------------------------|----------------------------|------------------------------------------|
| 1.31         | 1.05 - 1.62    | 1.18 / 1.61               | ***                        | 0.23 (18%)                               |



Parking Generation Manual, 5th Edition • Institute of Transportation Engineers

Peak Period Parking Demand vs: Dwelling Units

On a: Weekday (Monday - Friday)


Setting/Location: General Urban/Suburban (< 1/2 mile to rail transit)

Peak Period of Parking Demand: 11:00 p.m. - 6:00 a.m.

Number of Studies: 16
Avg. Num. of Dwelling Units: 117

#### **Peak Period Parking Demand per Dwelling Unit**

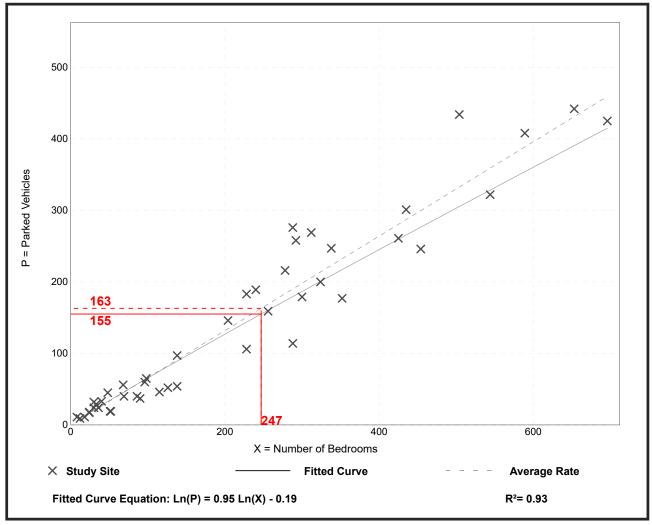
| Average Rate | Range of Rates | 33rd / 85th<br>Percentile | 95% Confidence<br>Interval | Standard Deviation<br>(Coeff. of Variation) |
|--------------|----------------|---------------------------|----------------------------|---------------------------------------------|
| 1.07         | 0.45 - 1.41    | 0.77 / 1.31               | ***                        | 0.29 (27%)                                  |



Parking Generation Manual, 5th Edition • Institute of Transportation Engineers

Peak Period Parking Demand vs: **Bedrooms** 

> Weekday (Monday - Friday) On a:


General Urban/Suburban (no nearby rail transit) Setting/Location:

Peak Period of Parking Demand: 11:00 p.m. - 6:00 a.m.

Number of Studies: 45 Avg. Num. of Bedrooms: 215

### **Peak Period Parking Demand per Bedroom**

| Average Rate | Range of Rates | 33rd / 85th<br>Percentile | 95% Confidence<br>Interval | Standard Deviation (Coeff. of Variation) |
|--------------|----------------|---------------------------|----------------------------|------------------------------------------|
| 0.66         | 0.37 - 1.38    | 0.61 / 0.86               | 0.62 - 0.70                | 0.15 (23%)                               |



Parking Generation Manual, 5th Edition • Institute of Transportation Engineers

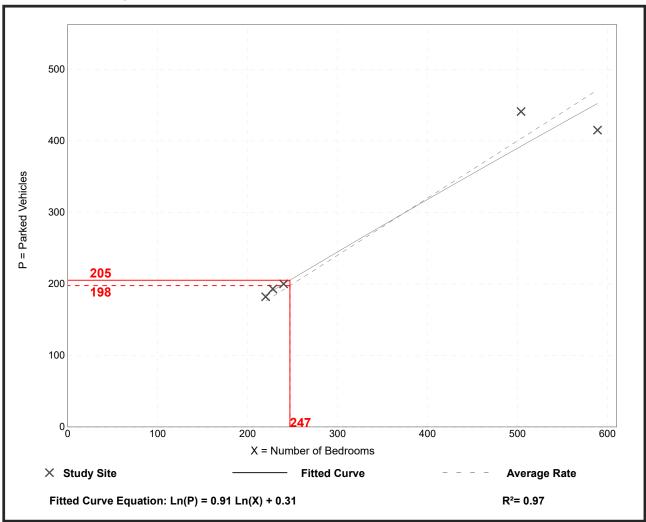
(220)

Peak Period Parking Demand vs: **Bedrooms** 

> On a: Saturday

General Urban/Suburban (no nearby rail transit) Setting/Location:

Peak Period of Parking Demand: 11:00 p.m. - 7:00 a.m.


Number of Studies: Avg. Num. of Bedrooms: 356

#### **Peak Period Parking Demand per Bedroom**

| Average Rate | Range of Rates | 33rd / 85th<br>Percentile | 95% Confidence<br>Interval | Standard Deviation (Coeff. of Variation) |
|--------------|----------------|---------------------------|----------------------------|------------------------------------------|
| 0.80         | 0.70 - 0.88    | 0.82 / 0.88               | ***                        | 0.08 (10%)                               |

#### **Data Plot and Equation**

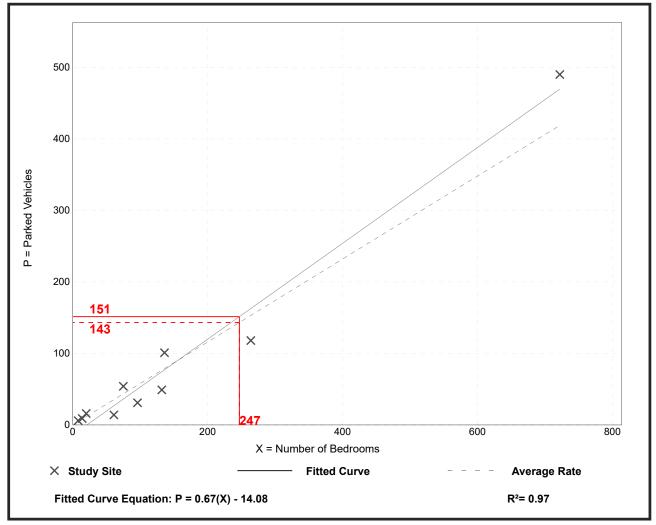
#### Caution - Small Sample Size



Parking Generation Manual, 5th Edition • Institute of Transportation Engineers

Peak Period Parking Demand vs: Bedrooms

On a: Weekday (Monday - Friday)


Setting/Location: General Urban/Suburban (< 1/2 mile to rail transit)

Peak Period of Parking Demand: 11:00 p.m. - 6:00 a.m.

Number of Studies: 10 Avg. Num. of Bedrooms: 153

### **Peak Period Parking Demand per Bedroom**

| Average Rate | Range of Rates | 33rd / 85th<br>Percentile | 95% Confidence<br>Interval | Standard Deviation (Coeff. of Variation) |
|--------------|----------------|---------------------------|----------------------------|------------------------------------------|
| 0.58         | 0.23 - 0.80    | 0.42 / 0.77               | ***                        | 0.17 (29%)                               |



Parking Generation Manual, 5th Edition • Institute of Transportation Engineers



Colliers Engineering & Design is a trusted provider of multi-discipline engineering, design and consulting services providing customized solutions for public and private clients through a network of offices nationwide.

For a full listing of our office locations, please visit colliersengineering.com

1 877 627 3772



Civil/Site • Traffic/Transportation • Governmental • Survey/Geospatial Infrastructure • Geotechnical/Environmental • Telecommunications • Utilities/Energy